Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.
In this work we launch a systematic theory of superconformal blocks for four-point functions of arbitrary supermultiplets. Our results apply to a large class of superconformal field theories including 4-dimensional models with any number N of supersymmetries. The central new ingredient is a universal construction of the relevant Casimir differential equations. In order to find these equations, we model superconformal blocks as functions on the supergroup and pick a distinguished set of coordinates. The latter are chosen so that the superconformal Casimir operator can be written as a perturbation of the Casimir operator for spinning bosonic blocks by a fermionic (nilpotent) term. Solutions to the associated eigenvalue problem can be obtained through a quantum mechanical perturbation theory that truncates at some finite order so that all results are exact. We illustrate the general theory at the example of d = 1 dimensional theories with N = 2 supersymmetry for which we recover known superblocks. The paper concludes with an outlook to 4-dimensional blocks with N = 1 supersymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.