Alzheimer's disease is a neuropsychiatric, progressive, also an irreversible disease. There is not an effective cure for the disease. However, early diagnosis has an important role for treatment planning to delay its progression since the treatments have the most impact at the early stage of the disease. Neuroimages obtained by different imaging techniques (for example, diffusion tensor‐based and magnetic resonance‐based imaging) provide powerful information and help to diagnose the disease. In this work, a deeply supervised and robust method has been developed using three dimensional features to provide objective and accurate diagnosis from magnetic resonance images. The main contributions are (a) a new three dimensional convolutional neural network topology; (b) a new Sobolev gradient‐based optimization with weight values for each decision parameters; (c) application of the proposed topology and optimizer to diagnose Alzheimer's disease; (d) comparisons of the results obtained from the recent techniques that have been implemented for Alzheimer's disease diagnosis. Experimental results and quantitative evaluations indicated that the proposed network model is able to achieve to extract desired features from images and provides automated diagnosis with 98.06% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.