Direct fluorination of dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylate, obtained from [1.1.1]propellane prepared by an improved synthetic procedure, furnished esters of 14 of the 15 possible bridge-fluorinated bicyclo[1.1.1]pentane-1,3-dicarboxylic acids, isolated by preparative GC. Calculated geometries reflect the substitution pattern in a regular fashion compatible with Bent's rules. Considerable additional strain is introduced into the bicyclo[1.1.1]pentane cage by polyfluorination; it is calculated to be as high as 33-35 kcal/mol for hexasubstitution. Three arrangements of the fluorine substituents are especially strain-rich: geminal, proximate, and W-related. The (1)H, (13)C, and (19)F NMR spectra exhibit a striking variety of chemical shifts and long-range coupling constants. These are in good agreement with results calculated with neglect of the bridgehead substituents for all of the chemical shifts by the GIAO-RHF/6-31G//RHF/6-31G and GIAO-RHF/6-31G//MP2/6-31G methods and for many of the coupling constants by the EOM-CCSD/6-311G//MP2/6-311G method. The proximate (4)J(FF) constants are particularly large (50-100 Hz) and show an inverse linear dependence on the calculated F-F distance in the range 2.43-2.58 A.
A series of 3-halo-substituted bicyclo[1.1.1]pentane-1-carboxylic acids 1 (Y = COOH; X = F, Cl, Br, I, and CF(3)) as well as the parent compound 1 (Y = COOH, X = H) have been prepared, and a study of some of their properties have been made. It was found that their reactions with xenon difluoride cover a wide range of reactivities. On one hand, the fluoro acid 1 (Y = COOH, X = F) displayed no apparent reaction at all while, on the other, the bromo acid 1 (Y = COOH, X = Br) and parent compound 1 (Y = COOH, X = H) underwent ready reaction with complete disintegration of the ring system. A possible explanation is advanced based on polar kinetic and thermodynamic effects governing the lifetime of an intermediate acyloxy radical species. The relative ease of oxidation of the carboxylates 1 (Y = COO(-); X = H, F, Cl, Br, I, CF(3), and COOCH(3)), as mirrored by their peak oxidation potential values (E(p)) determined by cyclic voltammetry, also covers a wide range. These data coupled with the dissociation constants (pK(a)) of some of the acids 1 (Y = COOH; X = H, F, Cl, and CF(3)) reflect significantly on the modes of transmission of electronic effects acting through the bicyclo[1.1.1]pentane ring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.