Addressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons in experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics across different behavioral states. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving rodents. An unsupervised algorithm identifies and tracks the activity of single units over weeks of recording, dramatically simplifying the analysis of large datasets. Months-long recordings from motor cortex and striatum made and analyzed with our system revealed remarkable stability in basic neuronal properties, such as firing rates and inter-spike interval distributions. Interneuronal correlations and the representation of different movements and behaviors were similarly stable. This establishes the feasibility of high-throughput long-term extracellular recordings in behaving animals.
The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the number of clusters can be any common divisor. The synchronized mode and the transients to synchronization pinpoint the type of external stimuli. The findings, supported by an information mixing argument and simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity and synaptic noise, call for reexamining sources of correlated activity in cortex and shorter information processing time scales. I. INRODUCTIONThe spiking activity of neurons within a local cortical population is typically correlated [1][2][3][4]. As a result, local cortical signals are robust to noise, which is a prerequisite for reliable signal processing in cortex. Under special conditions, coherent activity in a local cortical population is an inevitable consequence of shared presynaptic input [5-9]. Nevertheless, the mechanism for the emergence of correlation, synchronization or even nearly zero-lag synchronization (ZLS) among two or more cortical areas which do not share the same input is one of the main enigmas in neuroscience [7][8][9]. It has been argued that nonlocal synchronization is a marker of binding activities in different cortical areas into one perceptual entity [8,[10][11][12]. This prompted the hypothesis that synchronization may hold key information about higher and complex functionalities of the network. To investigate the synchronization of complex neural circuits we studied the activity modes of networks in which the properties of solitary neurons, population dynamics, delays, connectivity and background noise mimic the inter-columnar connectivity of the neocortex. II. NEURONAL CIRCUITWe start with a description of the neuronal circuits and define the properties of a neuronal cell, the structure of a node in a network representing one cortical patch, and the connection between nodes. Each neural cell was simulated using the well known Hodgkin Huxley model [13] (see Appendix for details). Each node in the network was comprised of a balanced population of 30 neurons, 80/20 percent of which were excitatory/inhibitory (Fig. 1a). The lawful reciprocal connections within each node were only between pairs of excitatory and inhibitory neurons and were selected at random with probability p in . In terms of biological properties it was assumed that distant cortico-cortical connections are (almost) exclusively excitatory whereas local connections are both excitatory and inhibitory [14,15]. In this framework, cortical areas are connected reciprocally across the two hemispheres and within a single hemisphere [16], where small functional cortical units (patches) connect to other cortical...
Addressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons in experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics across different behavioral states. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving rodents. An unsupervised algorithm identifies and tracks the activity of single units over weeks of recording, dramatically simplifying the analysis of large datasets. Months-long recordings from motor cortex and striatum made and analyzed with our system revealed remarkable stability in basic neuronal properties, such as firing rates and inter-spike interval distributions. Interneuronal correlations and the representation of different movements and behaviors were similarly stable. This establishes the feasibility of high-throughput long-term extracellular recordings in behaving animals.
Synthetic reverberating activity patterns are experimentally generated by stimulation of a subset of neurons embedded in a spontaneously active network of cortical cells in-vitro. The neurons are artificially connected by means of conditional stimulation matrix, forming a synthetic local circuit with a predefined programmable connectivity and time-delays. Possible uses of this experimental design are demonstrated, analyzing the sensitivity of these deterministic activity patterns to transmission delays and to the nature of ongoing network dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.