Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.
Reduced insulin/insulin-like growth factor 1 (IGF-1) signaling has been associated with longevity in various model organisms. However, the role of insulin/IGF-1 signaling in human survival remains controversial. The aim of this study was to test whether circulating IGF-1 axis parameters associate with old age survival and functional status in nonagenarians from the Leiden Longevity Study. This study examined 858 Dutch nonagenarian (males≥89 years; females≥91 years) siblings from 409 families, without selection on health or demographic characteristics. Nonagenarians were divided over sex-specific strata according to their levels of IGF-1, IGF binding protein 3 and IGF-1/IGFBP3 molar ratio. We found that lower IGF-1/IGFBP3 ratios were associated with improved survival: nonagenarians in the quartile of the lowest ratio had a lower estimated hazard ratio (95% confidence interval) of 0.73 (0.59 – 0.91) compared to the quartile with the highest ratio (ptrend=0.002). Functional status was assessed by (Instrumental) Activities of Daily Living ((I)ADL) scales. Compared to those in the quartile with the highest IGF-1/IGFBP3 ratio, nonagenarians in the lowest quartile had higher scores for ADL (ptrend=0.001) and IADL (ptrend=0.003). These findings suggest that IGF-1 axis parameters are associated with increased old age survival and better functional status in nonagenarians from the Leiden Longevity Study.
Familial longevity is associated with increased basal TSH secretion and a strong temporal relationship between TSH and free T3 but not with differences in ultradian or circadian TSH rhythmicity or feedback and forward interplay between TSH and TH.
SummaryReduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle-aged offspring of long-living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24-h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128-216) ]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39-0.53)] compared with controls [0.66 (0.56-0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF-1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.
BackgroundIndividuals exhibit fluctuations in the concentration of serum thyroid-stimulating hormone (TSH) over time. The scale of these variations ranges from minutes to hours, and from months to years. The main factors contributing to the observed within-person fluctuations in serum TSH comprise pulsatile secretion, circadian rhythm, seasonality, and ageing. In clinical practice and clinical research however, such within-person biological variation in serum TSH concentrations is often not considered. The aim of this review is to present an overview of the main sources of within-person variation in TSH levels, as well as the potential underlying biological mechanisms, and the clinical implications.SummaryIn euthyroid individuals, the circadian rhythm, with a nocturnal surge around 02:00–04:00 h and a nadir during daytime has the greatest impact on variations in serum TSH concentrations. Another source of within-person variation in TSH levels is seasonality, with generally higher levels during the cold winter months. Since TSH is secreted in a pulsatile manner, TSH levels also fluctuate over minutes. Furthermore, elevated TSH levels have been observed with ageing. Other factors that affect TSH levels include thyroid peroxidase (TPO)-antibody positivity, BMI, obesity, smoking, critical illness, and many xenobiotics, including environmental pollutants and drugs. Potential underlying biological mechanisms of within-person variation in TSH levels can be safely concluded from the ability of TSH to respond quickly to changes in cues from the internal or external environment in order to maintain homeostasis. Such cues include the biological clock, environmental temperature, and length of day. The observed increase in TSH level with ageing can be explained at a population level and at an organism level. In clinical practice, the season for thyroid testing can influence a patient’s test result and it occurs frequently that subclinical hypothyroid patients normalize to euthyroid levels over time without intervention.ConclusionsSerum TSH concentrations vary over time within an individual, which is caused by multiple different internal and external factors. It is important to take the within-person variations in serum TSH concentrations into account when testing a patient in clinical practice, but also in performing clinical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.