BackgroundExosomes are one of the several types of cell-derived vesicles with a diameter of 30–100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles.MethodsBased on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles.ResultsThe limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 104 cells was needed to obtain signals or that only 2.5×104 exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1–10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this tetraspanin was considerably lower.
The research field of extracellular vesicles (EVs) is increasing immensely and the potential uses of EVs seem endless. They are found in large numbers in various body fluids, and blood samples may well serve as liquid biopsies. However, these small membrane-derived entities of cellular origin are not straightforward to work with in regard to isolation and characterization. A broad range of relevant preanalytical issues was tested, with a focus on the phenotypic impact of smaller EVs. The influences of the i) blood collection tube used, ii) incubation time before the initial centrifugation, iii) transportation/physical stress, iv) storage temperature and time (short term and long term), v) choice of centrifugation protocol, vi) freeze-thaw cycles, and vii) exosome isolation procedure (ExoQuick™) were examined. To identify the impact of the preanalytical treatments, the relative amounts (detected signal intensities of CD9-, CD63- and/or CD81-positive) and phenotypes of small EVs were analyzed using the multiplexed antibody-based microarray technology, termed the EV Array. The analysis encompassed 15 surface- or surface-related markers, including CD9, CD63, CD81, CD142, and Annexin V. This study revealed that samples collected in different blood collection tubes suffered to varying degrees from the preanalytical treatments tested here. There is no unequivocal answer to the questions asked. However, in general, the period of time and prospective transportation before the initial centrifugation, choice of centrifugation protocol, and storage temperature were observed to have major impacts on the samples. On the contrary, long-term storage and freeze-thawing seemed to not have a critical influence. Hence, there are pros and cons of any choice regarding sample collection and preparation and may very well be analysis dependent. However, to compare samples and results, it is important to ensure that all samples are of the same type and have been handled similarly.
Extracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers. In this study, five major leukocyte subpopulations and the corresponding leukocyte-derived EVs were phenotyped with focus on selected immunological lineage-specific markers and selected vesicle-related markers. The leukocyte-derived EVs displayed phenotypic differences in the 34 markers investigated. The majority of the lineage-specific markers used for identification of the parent cell types could not be detected on EVs released from monocultures of the associated cell types. In contrast, the vesicular presentation of CD9, CD63, and CD81 correlated to the cell surface expression of these markers, however, with few exceptions. Furthermore, the cellular expression of CD9, CD63, and CD81 varied between leukocytes present in whole blood and cultured leukocytes. In summary, these data demonstrate that the cellular and vesicular presentation of selected lineage-specific and vesicle-related markers may differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled.
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting. As the interest in EVs has increased immensely, multiple techniques have been developed aiming at characterizing these vesicles. These techniques characterize different features of EVs, like the size distribution, enumeration, protein composition, and the intravesicular cargo (e.g., RNA). This review focuses on techniques that exploit the specificity and sensitivity associated with antibody-based assays to characterize the protein phenotype of EVs. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. Thus, protein profiling of EVs holds great diagnostic and prognostic potential.
Dendritic cells (DCs) are superior in their ability to induce and control adaptive immune responses. These qualities have motivated the hypothesis that targeted delivery of antigen to DCs in vivo may be an effective way of enhancing immunization. Recent results show that antigen targeted to certain DC surface molecules may indeed induce robust immune responses. Targeting of antigen to DCs can be accomplished by the means of monoclonal antibodies. This study compared the humoral responses induced in mice by in vivo targeting of DCs using monoclonal antibodies specific for CD11c, CD36, CD205, Clec6A, Clec7A, Clec9A, Siglec-H and PDC-TREM. The results demonstrate that antigen delivery to different targets on DCs in vivo gives rise to humoral responses that differ in strength. Targeting of antigen to CD11c, CD36, CD205, Clec6A, Clec7A and PDC-TREM induced significantly stronger antibody responses compared to non-targeted isotype-matched controls. Targeting of Clec9A and Siglec-H did not lead to efficient antibody responses, which may be due to unfavourable properties of the targeting antibody, in which case, other antibodies with the same specificity might elicit a different outcome. AntiCD11c was additionally used for elucidating the impact of the route of vaccination, and the results showed only minor differences between the antibody responses induced after immunization either s.c., i.v. or i.p. Altogether, these data show that targeting of different surface molecules on DCs result in very different antibody responses and that, even in the absence of adjuvants, strong humoral responses was induced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.