<p>Future wireless networks \textcolor{black}{(5G and beyond),} also known as Next Generation or NextG, are the vision of forthcoming cellular systems, connecting billions of devices and people together. In the last decades, cellular networks have been dramatically growth with advanced telecommunication technologies for high-speed data transmission, high cell capacity, and low latency. The main goal of those technologies is to support a wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous and flying vehicles, smart cities, smart grids, advanced manufacturing, and many more. The key motivation of NextG networks is to meet the high demand for those applications by improving and optimizing network functions. Artificial Intelligence (AI) has a high potential to achieve these requirements by being integrated in applications throughout all layers of the network. However, the security concerns on network functions of NextG using AI-based models, i.e., model poising, have not been investigated deeply. It is crucial to protect the next-generation cellular networks against cyber attacks, especially adversarial attacks. Therefore, it needs to design efficient mitigation techniques and secure solutions for NextG networks using AI-based methods. This paper proposes a comprehensive vulnerability analysis of deep learning (DL)-based channel estimation models trained with the dataset obtained from MATLAB's 5G toolbox for adversarial attacks and defensive distillation-based mitigation methods. The adversarial attacks produce faulty results by manipulating trained DL-based models for channel estimation in NextG networks, while making models more robust against any attacks through mitigation methods. This paper also presents the performance of the proposed defensive distillation mitigation method for each adversarial attack against the channel estimation model. The results indicated that the proposed mitigation method can defend the DL-based channel estimation models against adversarial attacks in NextG networks.</p>
<p>Future wireless networks \textcolor{black}{(5G and beyond),} also known as Next Generation or NextG, are the vision of forthcoming cellular systems, connecting billions of devices and people together. In the last decades, cellular networks have been dramatically growth with advanced telecommunication technologies for high-speed data transmission, high cell capacity, and low latency. The main goal of those technologies is to support a wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous and flying vehicles, smart cities, smart grids, advanced manufacturing, and many more. The key motivation of NextG networks is to meet the high demand for those applications by improving and optimizing network functions. Artificial Intelligence (AI) has a high potential to achieve these requirements by being integrated in applications throughout all layers of the network. However, the security concerns on network functions of NextG using AI-based models, i.e., model poising, have not been investigated deeply. It is crucial to protect the next-generation cellular networks against cyber attacks, especially adversarial attacks. Therefore, it needs to design efficient mitigation techniques and secure solutions for NextG networks using AI-based methods. This paper proposes a comprehensive vulnerability analysis of deep learning (DL)-based channel estimation models trained with the dataset obtained from MATLAB's 5G toolbox for adversarial attacks and defensive distillation-based mitigation methods. The adversarial attacks produce faulty results by manipulating trained DL-based models for channel estimation in NextG networks, while making models more robust against any attacks through mitigation methods. This paper also presents the performance of the proposed defensive distillation mitigation method for each adversarial attack against the channel estimation model. The results indicated that the proposed mitigation method can defend the DL-based channel estimation models against adversarial attacks in NextG networks.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.