We consider the problem of scheduling n jobs with release dates on m machines so as to minimize their average weighted completion time. We present the first known polynomial time approximation schemes for several variants of this problem. Our results include PTASs for the case of identical parallel machines and a constant number of unrelated machines with and without preemption allowed. Our schemes are efficient: for all variants the running time for a 1 + approximation is of the form f1= ; mpolyn.
We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speedscaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of scheduling a set of jobs on a set of parallel speed scalable processors in a fully heterogeneous setting. For both the preemptive-non-migratory and the preemptive-migratory variants, our approach allows us to obtain solutions of almost the same quality as for the homogeneous environment. By exploiting the result for the preemptive-non-migratory variant, we are able to improve the best known approximation ratio for the single processor non-preemptive problem. Furthermore, we show that our approach allows to obtain a constant-factor approximation algorithm for the power-aware preemptive job shop scheduling problem. Finally, we consider the min-power routing problem where we are given a network modeled by an undirected graph and a set of uniform demands that have to be routed on integral routes from their sources to their destinations so that the energy consumption is minimized. We improve the best known approximation ratio for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.