Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancer. Another promising cancer therapy is difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, which is oraly administered and well tolerated. Nevertheless, many types of cancer, including gliomas, have exhibited resistance to TRAIL-induced apoptosis and similarly the potency of DFMO should be enhanced to optimize therapeutic efficacy. In this study we sought to determine whether DFMO, in combination with TRAIL and radiation, could result in an enhanced anti-glioma effect in vitro. We investigated the effect of DFMO, TRAIL and radiation in various combinations on a panel of glioblastoma cell lines (A172, T98G, D54, U251MG). Viability and proliferation of the cells were examined with trypan blue exclusion assay, crystal violet and xCELLigence system. Apoptosis (Annexin-PI), cell cycle and activation of caspase-8 were tested with flow cytometry. BAD protein levels were determined by Western blot analysis. DFMO induced BAD overexpression. Combination treatment with DFMO, TRAIL and radiation significantly reduced cell viability in all cell lines tested. Increased induction of cell death and cell cycle arrest was confirmed with flow cytometry in A172 and D54 cell lines, while enhanced activation of annexin and caspase-8 was revealed in U251MG and T98G cells. The treatment of glioblastoma cell lines with combination of DFMO, TRAIL and radiation showed an enhanced effect. This combination treatment may represent a novel strategy for targeting glioblastoma.
A B S T R A C T Aim:The neutrophil-to-lymphocyte ratio (NLR) has prognostic value in patients with a variety of cancers. The purpose of this study was to investigate the prognostic value of NLR in patients with glioblastoma. Methods: A prospective study was conducted on patients receiving surgery for glioblastoma. Preoperative NLR was recorded and correlated with other prognostic factors and survival. Results: Fifty-one patients were included in the study. The mean NLR ratio was 6.7 ± 4.6. Using receiver operating characteristic curve analysis, an NLR cut-off value of 4.7 was determined to best predict survival. Patients with NLR ratios exceeding 4.7 differed significantly from those with NLR ratios ≤ 4.7 and were associated with reduced survival. Patients with gross total tumor excision had a median survival of 18 months, whereas the median survival time was 11 months in patients with subtotal tumor excision. No significant difference in survival was observed with respect to patient age, gender, Karnofsky performance status, or tumor location. Using multivariate analysis, NLR and extent of tumor resection were identified as factors with independent prognostic power. Conclusion: Neutrophil-to-lymphocyte ratio is an inexpensive, widely available biomarker of glioblastoma aggressiveness and should be used alongside current glioblastoma prognostic factors.
Glioblastoma is the most common and most malignant primary brain tumor with a median survival of 15 months. N-(p-coumaroyl) serotonin (CS) is an indole alkaloid with antioxidant, cardioprotective effects after ischemia and antitumor activity. In the present study we sought to determine whether could exert cytotoxic and cytostatic effects in glioma cells in vitro. CS was tested for toxicity in zebrafish. We investigated the effect of CS in U251MG and T98G glioblastoma cell lines. Viability and proliferation of the cells were examined with trypan blue exclusion assay and the xCELLigence system. Cell cycle, activation of caspase-8, mitochondrial membrane potential and CD24/CD44/CD56/CD15/CD71 expression were tested with flow cytometry. Treatment with CS significantly reduced cell viability in both cell lines tested. Induction of cell death and cell cycle arrest at G2/M and S-phase was confirmed with flow cytometry in both cell lines. CS produced significant higher activity of caspase-8 compared to control. After treatment with CS there was a dose-dependent increase in CD15 and CD71 expression, whereas there was no change in CD24/CD44/CD56 expression in both cell lines. The zebrafish mortality on the fifth post fertilization day was zero for even 1 mM of CS concentration. The treatment of glioblastoma cell lines with CS may represent a novel strategy for targeting glioblastoma. Further studies are obviously needed to elucidate the complete mechanism of its antitumor activity.
Central nervous system malignancies (CNSMs) are categorized among the most aggressive and deadly types of cancer. The low median survival in patients with CNSMs is partly explained by the objective difficulties of brain surgeries as well as by the acquired chemoresistance of CNSM cells. Flow Cytometry is an analytical technique with the ability to quantify cell phenotype and to categorize cell populations on the basis of their characteristics. In the current review, we summarize the Flow Cytometry methodologies that have been used to study different phenotypic aspects of CNSMs. These include DNA content analysis for the determination of malignancy status and phenotypic characterization, as well as the methodologies used during the development of novel therapeutic agents. We conclude with the historical and current utility of Flow Cytometry in the field, and we propose how we can exploit current and possible future methodologies in the battle against this dreadful type of malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.