Common time-explicit numerical methods for kinetic simulations of plasmas in the lowcollisions limit fall into two classes of algorithms: momentum conserving [also known as Particle-In-Cell (PIC)] and energy conserving. Each has certain drawbacks. The PIC algorithm does not conserve total energy, which may lead to spurious numerical heating (grid heating). Its overall accuracy is at most second due to the nature of the force interpolation between grid and particle position. Energy-conserving algorithms do not exhibit grid heating, but because their formulation uses potentials, computationally undesirable matrix inversions may be necessary. In addition, compared to PIC algorithms for the same accuracy, these algorithms have higher numerical noise due to the restricted choice of particle shapes. Here we formulate time-explicit, finite-size particle algorithms using particular reductions of the particle distribution function. These reductions are used in two variational principles, a Lagrangian-based and a Hamiltonian-based in conjunction with a non-canonical Poisson bracket. The Lagrangian formulations here generalize previous such formulations. The Hamiltonian formulation is presented here for the first time. Many drawbacks of the two classes of particle methods are mitigated. For example, restrictions on particle shapes are relaxed in energy conserving algorithms, which allows to decrease the numerical noise in these methods. The Hamiltonian formulation of particle algorithms is done in terms of fields instead of potentials, thus avoiding solving Poisson's equation. An algorithm that conserves both energy and momentum is presented. Other features of the algorithms include a natural way to perform coordinate transformations, the use of various time integrating methods, and the ability to increase the overall accuracy beyond second order, including all generalizations. For simplicity, we restrict our discussion to one-dimensional, non-relativistic, unmagnetized, electrostatic plasmas.
A variation formulation of macro-particle kinetic plasma models is discussed. In the electrostatic case, the use of symplectic integrators is investigated and found to offer advantages over typical generic methods. For the electromagnetic case, gauge invariance and momentum conservation are considered in detail. It is shown that, while the symmetries responsible for these conservation laws are broken in the presence of a spatial grid, the conservation laws hold in an average sense. The requirements for exact invariance are explored and it is shown that one viable option is to represent the potentials with a truncated Fourier basis. V C 2014 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.