IntroductionThe presence of circulating Ro/SSA and La/SSB autoantibodies has become an important marker in the classification criteria for primary Sjögren's syndrome (pSS). Plasma cells producing these autoantibodies are mainly high affinity plasma cells originating from germinal centre reactions. When exposed to the right microenvironment these autoimmune plasma cells become long-lived and resistant to immunosuppressive treatment. Since autoimmune plasma cells have been detected in the salivary glands of SS patients, we wanted to investigate if the glandular microenvironment is suitable for plasma cell survival and if glandular residing plasma cells are the long-lived plasma cell subset.MethodsSingle, double and triple immunohistochemistry as well as immunofluorescence staining was performed on minor salivary gland tissue retrieved from pSS, chronically inflamed and normal subjects.ResultsWe detected significant numbers of CD138+, non-proliferating, Bcl-2 expressing plasma cells in the salivary glands of pSS patients with high focus score (FS). Furthermore, we demonstrated that CXCL12 and interleukin (IL)-6 survival factors were highly expressed in pSS salivary gland epithelium and by focal mononuclear infiltrating cells. Notably, adipocytes when present in the salivary gland tissue were an important source of CXCL12. We clearly demonstrate that plasma cells are localised in close proximity to CXCL12 and IL-6 expressing cells and thus that the environment of salivary glands with high FS provide factors vital for plasma cell survival.ConclusionsPlasma cells residing in the salivary glands of pSS patients with high FS showed phenotypic characteristics of the long-lived plasma cell subtype. Furthermore, the pSS salivary gland microenvironment provided niches rich in factors vital for plasma cell survival.
Degenerative changes observed in the minor salivary glands of patients with pSS may represent 'burned out' inflammation. The elevated levels of IL-4 found in these patients may influence the reduced salivary flow observed in GC+ patients. Increased titres of Th17-associated cytokines, IL-17, IL-1beta and the IL-23 subunit IL-12p40, may indicate a higher activity of these cells in GC+ patients. Differences in cytokine levels may be utilized when sub-grouping the SS patients into disease phases and may consequently have implications for treatment.
Vaccination provides the most effective method of limiting the impact of influenza. Inactivated influenza vaccines are available in three formulations and more information needs to be generated on how antigen presented in different vaccine formulations influences the subsequent immune response. In the present study, we have investigated the effect of two different influenza vaccine formulations on the resulting antibody and cytokine responses and compared these responses with influenza infection. Mice were vaccinated intramuscularly with one or two doses of whole or split virus vaccine or alternatively intranasally infected with influenza virus. Lymphocytes were isolated from spleen cells and stimulated in vitro for 24 or 72 h for analysis of cytokine profile at the gene expression and at the protein level. Additionally, whole blood was collected and the serum antibody response investigated by haemagglutination inhibition (HI) and enzyme‐linked immunosorbent assay (ELISA). We found that one dose of whole virus vaccine induced higher antibody and cytokine responses and thus was more immunogenic in unprimed mice than split virus vaccine. Whole virus vaccine induced a strong IFN‐γ (type 1) immune response after one dose of vaccine and a more mixed cytokine response after the second dose. Split virus vaccine induced a type 2 response, particularly after two vaccine doses. Our results show that two doses of vaccine (both vaccine formulation) were more effective in induction of Th2 type of cytokines and thus indicate that both the formulation and also the number of vaccine doses substantially influences the magnitude and quality of the immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.