The intracellular delivery of functional nanoparticles (NPs) and the release of therapeutic payloads at a target site are central issues for biomedical applications. However, the endosomal entrapment of NPs typically results in the degradation of active cargo, leading to poor therapeutic outcomes. Current advances to promote the endosomal escape of NPs largely involve the use of polycationic polymers and cell-penetrating peptides (CPPs), which both often suffer from potential toxicity and convoluted synthesis/conjugation processes. Herein, we report the use of metal-phenolic networks (MPNs) as versatile and nontoxic coatings to facilitate the escape of NPs from endo/lysosomal compartments. The MPNs, which were engineered from the polyphenol tannic acid and Fe III or Al III , enabled the endosomal escape of both inorganic (mesoporous silica) and organic (polystyrene and melamine resin) NPs owing to the "proton-sponge effect" arising from the buffering capacity of MPNs. Postfunctionalization of the MPN-coated NPs with low-fouling polymers did not impair the endosomal escape, indicating the modular and generalizable nature of this approach. We envisage that the ease of fabrication, versatility, low cytotoxicity, and promising endosomal escape performance displayed by the MPN coatings offer opportunities for such coatings to be used for the efficient delivery of cytoplasm-targeted therapeutics using NPs.
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site-or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies aiming to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Bio–nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio–nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the “bio” in bio–nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Multilayered particles in gene therapy for Friedreich's ataxia induce a 27 000-fold increase in frataxin gene expression in a patient-derived cell model.
Neurodegenerative diseases are generally characterized by a progressive loss of neuronal subpopulations, with no available cure to date. One of the main reasons for the limited clinical outcomes of new drug formulations is the lack of appropriate in vitro human cell models for research and validation. Stem cell technologies provide an opportunity to address this challenge by using patient-derived cells as a platform to test various drug formulations, including particlebased drug carriers. The therapeutic efficacy of drug delivery systems relies on efficient cellular uptake of the carrier and can be dependent on its size, shape, and surface chemistry. Although considerable efforts have been made to understand the effects of the physiochemical properties of particles on two-dimensional cell culture models, little is known of their effect in threedimensional (3D) cell models of neurodegenerative diseases. Herein, we investigated the role of particle size (235-1000 nm), charge (cationic and anionic), and density (1.05 and 1.8 g cm -3 ) on the interactions of particles with human embryonic stem cell-derived 3D cell cultures of sensory neurons, called sensory neurospheres (sNSP). Templated layer-by-layer particles, with silica or polystyrene cores, and self-assembled glycogen/DNA polyplexes were used. Particles with sizes of <280 nm effectively penetrated sNSP. Additionally, effective plasmid DNA delivery was observed up to six days post-transfection with glycogen/DNA polyplexes. The findings provide guidance in nanoparticle design for therapies aimed at neurodegenerative diseases, in particular Friedreich's ataxia, whereby sensory neurons are predominantly affected. They also demonstrate the application of 3D models of human sensory neurons in pre-clinical drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.