We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. −0.07 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m g ≤ 7.7 × 10 −23 eV=c 2 . In all cases, we find that GW170104 is consistent with general relativity.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry 1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific 4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may Reprints and permissions information is available at http://www.nature.com/reprints.
This paper describes the Pegasus framework that can be used to map complex scientific workflows onto distributed resources. Pegasus enables users to represent the workflows at an abstract level without needing to worry about the particulars of the target execution systems. The paper describes general issues in mapping applications and the functionality of Pegasus. We present the results of improving application performance through workflow restructuring which clusters multiple tasks in a workflow into single entities. A real-life astronomy application is used as the basis for the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.