The HNRNPH2-associated disease (mental retardation, X-linked, syndromic, Bain type [MRXSB, MIM #300986]) is caused by de novo mutations in the X-linked HNRNPH2 gene. MRXSB has been described in six female patients with dysmorphy, developmental delay, intellectual disability, autism, hypotonia and seizures. The reported HNRNPH2 mutations were clustered in the small domain encoding nuclear localization signal; in particular, the p.Arg206Trp was found in four independent de novo events. HNRNPH1 is a conserved autosomal paralogue of HNRNPH2 with a similar function in regulation of pre-mRNAs splicing but so far it has not been associated with human disease. We describe a boy with a disease similar to MRXSB in whom a novel de novo mutation c.616C>T (p.Arg206Trp) in HNRNPH1 was found (ie, the exact paralogue of the recurrent HNRNPH2 mutation). We propose that defective function of HNRNPH2 and HNRNPH1 nuclear localization signal has similar clinical consequences. An important difference between the two diseases is that the HNRNPH1-associated syndrome may occur in boys (as in the case of our proband) which is well explained by the autosomal (chr5q35.3) rather than X-linked localization of the HNRNPH2 gene.
Epilepsy in children is the most frequent, heterogeneous and difficult to classify chronic neurologic condition with the etiology found in 35–40% of patients. Our aim is to detect the metabolic differences between the epileptic children and the children with no neurological abnormalities in order to define the metabolic background for therapy monitoring. The studied group included 28 epilepsy patients (median age 12 months) examined with a diagnostic protocol including EEG, videoEEG, 24-hour-EEG, tests for inborn errors of metabolism, chromosomal analysis and molecular study. The reference group consisted of 20 patients (median age 20 months) with no neurological symptoms, no development delay nor chronic diseases. 1H-NMR serum spectra were acquired on 400 MHz spectrometer and analyzed using multivariate and univariate approach with the application of correction for age variation. The epilepsy group was characterized by increased levels of serum N-acetyl-glycoproteins, lactate, creatine, glycine and lipids, whereas the levels of citrate were decreased as compared to the reference group. Choline, lactate, formate and dimethylsulfone were significantly correlated with age. NMR-based metabolomics could provide information on the dynamic metabolic processes in drug-resistant epilepsy yielding not only disease-specific biomarkers but also profound insights into the disease course, treatment effects or drug toxicity.
Aim of the study. This study aimed to evaluate the effects of nusinersen therapy in Polish children with SMA type 1.Clinical rationale of study. Spinal muscular atrophy (SMA) is a neuromuscular disorder that is characterised by the loss of motor neurons, progressive muscle weakness and atrophy, leading to increased disability and mortality. Nusinersen, an antisense oligonucleotide that promotes production of the functional survival motor neuron protein is approved for the treatment of SMA 5q in the European Union. In 2017, an early access programme (EAP) for nusinersen was launched in Poland. In this study, we present the results of nusinersen treatment in Polish patients participating in the EAP. Materials and methods.We collected prospectively clinical data including mutational analysis of SMN1 and SMN2 genes, motor function outcomes as measured on a standardized scales, ventilatory and nutritional status, on SMA type 1 patients receiving nusinersen in three EAP centres in Poland. Scores on the CHOP-INTEND scale after 18-26 months of treatment were compared to baseline. Results. We analysed data from 26 patients with SMA type 1, mean age 4.79 (2-15) years. The mutational analysis revealed two SMN2 gene copies in the majority of patients (61.54%). Three and four copies were found in 34.62% and 3.84%, respectively. Median disease duration was 21 months. Half (n = 13) of the patients required mechanical ventilation at baseline and 57.69% (n = 15) were fed by nasogastric tube or percutaneous endoscopic gastrostomy. No patient worsened during the follow-up. Mean improvement in CHOP-INTEND from baseline to the last follow-up was 7.38 points (p < 0.001). CHOP-INTEND scores did not decline for any patient. Patients with three or more SMN2 gene copies had higher scores than did the patients with two copies (p = 0.013), and they tended to show greater improvement over time, but the difference was not significant (p = 0.324). Shorter disease duration and higher CHOP-INTEND baseline score were associated with a better response (p = 0.015). Patients with a CHOP-INTEND score above the median had higher scores overall than the rest (p < 0.0013), and they improved significantly more than the rest (p = 0.037). Nusinersen was well tolerated, no new safety findings were identified.Conclusions and clinical implications. Our data indicates that nusinersen treatment might be effective in SMA type 1 patients, regardless of their age and functional status.
Drug-resistant epilepsies still remain one of the most profound problems of contemporary epileptology. Several mechanisms of drug resistance are possible; among them, genetic factors have a prominent place. Much importance is attached to genes, which encode enzymes that metabolize antiepileptic drugs CYP 3A, which belong to the family of cytochromes P450 and the genome of multidrug resistance, such as multidrug resistance 1 (MDR1) that expresses P-glycoprotein (P-gp), a drug transporter protein. The aim of the study was to assess the relation between polymorphism of gene CYP3A5 and polymorphism C3435T of MDR1 gene with the occurrence of focal, drug-resistant epilepsy in children and youths up to 18 years of age. The study comprised 85 patients, and their age range was from 33 months to 18 years of age, suffering from epilepsy, partly responding well to treatment, partly drug resistant. The polymorphism of both genes has been analysed using the PCR-RFLP method. The study failed to corroborate association between polymorphism CYP3A5∗3 and C3435T polymorphism in MDR1 gene and pharmacoresistant epilepsy. The results of our research do not confirm the prognostic value of the polymorphisms examined in the prognostication of drug resistance in epilepsies.
The main aim of the study was to compare the melatonin rhythms in subjects with Angelman syndrome (n = 9) and in children with (n = 80) and without (n = 40) epilepsy (nonepileptic patients diagnosed with peripheral nerve palsies, myopathy, and back pain) using our mathematical model of melatonin circadian secretion. The characteristics describing the diurnal hormone secretion such as minimum melatonin concentration, release amplitude, phase shift of melatonin release, and sleep duration as well as the dim light melatonin onset (DLMO) of melatonin secretion and the γ shape parameter allow analyzing the fit and deducing about how much the measured melatonin profile differs from a physiological bell-shaped secretion. The estimated sleep duration and phase shift of melatonin release as well as the DMLO offsets at 25% and 50% relative thresholds are the key characteristic of Angelman syndrome children. As revealed from the γ shape parameter, the melatonin secretion profiles are disturbed in majority of the AG subjects revealing rather a triangular course instead of the bell-like one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.