5 7Carrot (Daucus carota subsp. carota L.; 2n = 2x = 18) is a globally important root crop whose production has quadrupled between 1976 and 2013 (FAO Statistics; see URLs), outpacing the overall rate of increase in vegetable production and world population growth (FAO Statistics; see URLs) through development of high-value products for fresh consumption, juices, and natural pigments and cultivars adapted to warmer production regions 1 .The first documented colors for domesticated carrot root were yellow and purple in Central Asia approximately 1,100 years ago 2,3 , with orange carrots not reliably reported until the sixteenth century in Europe 4,5 . The popularity of orange carrots is fortuitous for modern consumers because the orange pigmentation results from high quantities of alpha-and beta-carotene, making carrots the richest source of provitamin A in the US diet 6 . Carrot breeding has substantially increased nutritional value, with a 50% average increase in carotene content in the United States as compared to 40 years ago 6 . Lycopene and lutein in red and yellow carrots, respectively, are also nutritionally important carotenoids, making carrot a model system to study storage root development and carotenoid accumulation.Carrot is the most important crop in the Apiaceae family, which includes numerous other vegetables, herbs, spices, and medicinal plants that enhance the epicurean experience 7 , including celery, parsnip, arracacha, parsley, fennel, coriander, and cumin. The Apiaceae family belongs to the euasterid II clade, which includes important crops such as lettuce and sunflower 8 . Genome sequences of euasterid I species have been reported, but only two genomes 9,10 have been published among the other euasterid II species.Here we report a high-quality genome assembly of a doubledhaploid orange carrot, characterization of the mechanism controlling carotenoid accumulation in storage roots, and the resequencing of 35 accessions spanning the genetic diversity of the Daucus genus. Our comprehensive genomic analyses provide insights into the evolution of the asterids and several gene families. These results will facilitate biological discovery and crop improvement in carrot and other crops.A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution We report a high-quality chromosome-scale assembly and analysis of the carrot (Daucus carota) genome, the first sequenced genome to include a comparative evolutionary analysis among members of the euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carrot from members of the Asterales order, clarifying the evolutionary scenario before and after radiation of the two main asterid clades. Large- and small-scale lineage-specific duplications have contributed to the expansion of gene families, including those with roles in flowering time, defense response, flavor, and pigment accumulation. We identified a candidate gene, DCAR_032551, that conditions caro...
An easy and effective regeneration system from leaf-and hypocotyl-derived protoplasts was established for carrot. The protoplast isolation efficiency after preplasmolytic treatment and digestion of source material in enzyme mixture consisted of 1% cellulase Onozuka R-10 and 0.1% pectolyase Y-23 reached on average 3 9 10 6 and 10 6 protoplasts per g of leaf and hypocotyl tissue, respectively. A modified thin alginate layer technique was applied for the protoplast culture. Direct somatic embryogenesis on a simplified Kao and Michayluk medium in the presence of 2,4-D and zeatin occurred during cultivation of both leaf-and hypocotyl-derived protoplasts for all accessions used. Morphologically normal plants were produced at very high efficiency within two months after initiation of the protoplast culture. Ninety three percent of in vitro derived plants were diploids. Pollen viability and seed set after self-pollination were similar to those of plants obtained from seeds. Keywords Carrot Á Daucus carota Á Plating efficiency Á Protoplast viability Á Somatic embryogenesis Abbreviations CPP Carrot petiole protoplast medium 2,4-D 2,4-Dichlorophenoxyacetic acid ETAF Extra thin alginate film FDA Fluorescein diacetate MES 2-(N-Morpholino)ethanesulfonic acid MS Murashige and Skoog medium (1962) NAA a-Naphthaleneacetic acid PEM Proembryonic mass TAL Thin alginate layer
Protoplasts of four Daucus carota subspecies and three wild Daucus species were isolated from 2-weekold shoot cultures during overnight incubation in an enzyme mixture composed of 1 % (w/v) cellulase Onozuka R-10 and 0.1 % (w/v) pectolyase Y-23. Before the culture, they were embedded in autoclave-or filter-sterilized alginate solution. Modified thin alginate layer (TAL) and extra thin alginate film (ETAF) techniques were applied for protoplast immobilization. A rich mineral-organic medium based on the formulation of Kao and Michayluk supplemented with 0.1 mg l -1 2,4-dichlorophenoxyacetic acid, 0.2 mg l -1 zeatin, and optionally 100 nM phytosulfokine (PSK), a peptidyl plant growth factor, was used for protoplast culture. Plating efficiency was genotype-dependent and in 40-day-old cultures, it varied from 10 % for Daucus pusillus to 73 % for D. carota subsp. sativus. A considerably higher ability in colony formation was observed in the modified TAL culture system using filter-sterilized alginate and in the presence of PSK in the protoplast culture medium. Plant regeneration through somatic embryogenesis stimulated by PSK application occurred for five out of the seven Daucus accessions used in the present study. We believe our data may facilitate the use of wild Daucus in somatic hybridization with cultivated carrot.
Carotenoid microcrystals,e xtracted from cells of carrot roots and consisting of 95 %o fa chiral b-carotene, exhibit avery intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is an ewly observed phenomenon in nature,a nd may be related to asymmetric information transfer from the chiral seeds (small amount of a-carotene or lutein) present in carrot cells.T oc onfirm this hypothesis,w es ynthesized several model aggregates from various achiral and chiral carotenoids.Because of the sergeantand-soldier behavior,asmall number of chiral sergeants (a-carotene or astaxanthin) force the achiral soldier molecules (b-o r1 1,11'-[D 2 ]-b-carotene) to jointly form supramolecular assemblies of induced chirality.T he chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co-crystallization of chiral and achiral analogues.
Karyotype analysis provides insights into genome organization at the chromosome level and into chromosome evolution. Chromosomes were marked for comparative karyotype analysis using FISH localization of rDNA genes for the first time in Apioideae species including taxa of economic importance and several wild Daucus relatives. Interestingly, Daucus species did not vary in number of rDNA loci despite variation in chromosome number (2n = 18, 20, 22, and 44) and previous publications suggesting multiple loci. All had single loci for both 5S and 18S-25S (nucleolar organizing region) rDNA, located on two different chromosome pairs. The 5S rDNA was on the short arm of a metacentric chromosome pair in D. crinitus (2n = 22) and D. glochidiatus (2n = 44) and on the long arm of a metacentric pair in other Daucus species, suggesting possible rearrangement of this chromosome. For other Apiaceae, from two (Apium graveolens), to three (Orlaya grandiflora), to four (Cuminum cyminum) chromosomes had 18S-25S rDNA sites. Variability for number and position of the 5S rDNA was also observed. FISH signals enabled us to identify 20-40% of the chromosome complement among species examined. Comparative karyotype analysis provides insights into the fundamental aspects of chromosome evolution in Daucus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.