Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained by selected plant life-history traits, notably by plant investments in growth versus reproduction. In 599 Eurasian sites with herbaceous vegetation we examined the relationship between the local nutrient conditions and community-mean life-history traits. We found that compared with plants in nitrogen-limited communities, plants in phosphorus-limited communities invest little in sexual reproduction (for example, less investment in seed, shorter flowering period, longer lifespan) and have conservative leaf economy traits (that is, a low specific leaf area and a high leaf dry-matter content). Endangered species were more frequent in phosphorus-limited ecosystems and they too invested little in sexual reproduction. The results provide new insight into how plant adaptations to nutrient conditions can drive the distribution of plant species in natural ecosystems and can account for the vulnerability of endangered species.
Although conservation of percolation mires is very important for the European biodiversity, our understanding of their functioning is still insufficient, as most of the studied sites are to some extent degraded. We present a study on the relationship between vegetation patterns, hydrochemical gradients and water level fluctuations carried out in the Rospuda valley (NE Poland), which was recently discovered for science as a uniquely preserved fully functioning percolation mire. Vegetation composition, mire water chemistry and water level dynamics were studied along five transects perpendicular to the valley. Eight major vegetation types were identified: brown moss-small and slender sedge fens, Sphagnum-small sedge fens, brown moss-tall sedge fens, tall sedge-reed fens, pinebirch fen woodlands and shrublands, spruce fen woodlands, inundated alder woodlands, alder spring fen woodlands. The seasonal dynamics of water table was revealed as the major factor explaining vegetation patterns. The studied chemical parameters were relatively homogeneous in the whole mire-there is a rather uniform type of mineral-rich nutrient-poor subsurface water all across the fen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.