B-cell development and differentiation are controlled at multiple levels by the complex interplay of specific receptors and a variety of transcription factors. Several receptors involved in regulating this process, such as IL-7R, pre-B cell receptor (pre-BCR), and BCR, share the ability to trigger the signaling via the phosphoinositide 3-kinase (PI3K)-AKT pathway. FOXO1 transcription factor, a major PI3K-AKT downstream effector, regulates the expression of genes critical for progress through consecutive steps of B-cell differentiation. FOXO1 directs or fine-tunes multiple biological functions that are crucial for differentiating cells, including the cell cycle, apoptosis, oxidative stress response or DNA damage repair. Recent studies have highlighted the key role that FOXO1 plays in the maintenance of the hematopoietic stem cell pool, regulation of progenitor commitment, development of early B-cell precursors, induction of B-cell tolerance, peripheral B-cell homeostasis, and terminal differentiation. FOXO1 deficiency impairs B-cell development, due to decreased expression of its critical target genes, that include early B-cell factor (EBF1), IL-7 receptor, recombination activating genes (RAG1 and 2), activation-induced cytidine deaminase (AID), L-selectin, and BLNK. Taken together, FOXO1 is an important node in a dynamic network of transcription factors that orchestrate B-cell differentiation and specialization. Herein, we review molecular mechanisms of the PI3K-AKT-dependent signal transduction and their impact on early B-cell development, peripheral B-cell homeostasis, and terminal differentiation.
Inhibition of spleen tyrosine kinase (SYK) in tonic B-cell receptor (BCR) signal-dependent diffuse large B-cell lymphomas (DLBCLs) inhibits cellular proliferation, decreases cholesterol biosynthesis, and triggers apoptosis, at least in part via a mechanism involving decreased activity of phosphatidylinositol 3-kinase/AKT axis. Because forkhead box O1 (FOXO1) is a major effector of this pathway, we investigated the role of FOXO1 in toxicity of BCR pathway inhibition. Inhibition of SYK in DLBCL cells with tonic BCR signaling decreased phospho-AKT and phospho-FOXO1 levels and triggered FOXO1-driven gene expression. Introduction of constitutively active FOXO1 mutant triggered cell cycle arrest and apoptosis, indicating that increased FOXO1 activity is toxic to these DLBCL cells. Depletion of FOXO1 with short hairpin RNA led to almost complete resistance to chemical SYK inhibitor R406, demonstrating that FOXO1 is also required for R406-induced cell death. FOXO1 in these cells is also involved in regulation of expression of the critical master regulator of cholesterol biosynthesis, SREBP1. Because HRK is the key effector of SYK inhibition, we characterized a mechanism linking FOXO1 activation and HRK induction that involves caspase-dependent cleavage of HRK's transcriptional repressor DREAM. Because AKT in lymphoma cells can be regulated by other signals than BCR, we assessed the combined effects of the AKT inhibitor MK-2206 with R406 and found markedly synergistic FOXO1-dependent toxicity. In primary DLBCLs, FOXO1 expression was present in 80% of tumors, correlated with SYK activity, and was associated with longer overall survival. These results demonstrate that FOXO1 is required for SYK and AKT inhibitor-induced toxicity. (Blood. 2016;127(6):739-748)
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% ( = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.
Molecular profiling has led to identification of subtypes of diffuse large B-cell lymphomas (DLBCLs) differing in terms of oncogenic signaling and metabolic programs. The OxPhos-DLBCL subtype is characterized by enhanced mitochondrial oxidative phosphorylation. As increased oxidative metabolism leads to overproduction of potentially toxic reactive oxygen species (ROS), we sought to identify mechanisms responsible for adaptation of OxPhos cells to these conditions. Herein, we describe a mechanism involving the FOXO1-TXN-p300 redox-dependent circuit protecting OxPhos-DLBCL cells from ROS toxicity. We identify a BCL6-dependent transcriptional mechanism leading to relative TXN overexpression in OxPhos cells. We found that OxPhos cells lacking TXN were uniformly more sensitive to ROS and doxorubicin than control cells. Consistent with this, the overall survival of patients with high TXN mRNA expression, treated with doxorubicin-containing regimens, is significantly shorter than of those with low TXN mRNA expression. TXN overexpression curtails p300-mediated FOXO1 acetylation and its nuclear translocation in response to oxidative stress, thus attenuating FOXO1 transcriptional activity toward genes involved in apoptosis and cell cycle inhibition. We also demonstrate that FOXO1 knockdown in cells with silenced TXN expression markedly reduces ROS-induced apoptosis, indicating that FOXO1 is the major sensor and effector of oxidative stress in OxPhos-DLBCLs. These data highlight dynamic, context-dependent modulation of FOXO1 tumor-suppressor functions via acetylation and reveal potentially targetable vulnerabilities in these DLBCLs.
Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.