Summary When two surveys carried out separately in the same population have common variables, it might be desirable to adjust each survey's weights so that they give equal estimates for the common variables. This problem has been studied extensively and has often been referred to as alignment or numerical consistency. We develop a design‐based empirical likelihood approach for alignment and estimation of complex parameters defined by estimating equations. We focus on a general case when a single set of adjusted weights, which can be applied to both common and non‐common variables, is produced for each survey. The main contribution of the paper is to show that the impirical log‐likelihood ratio statistic is pivotal in the presence of alignment constraints. This pivotal statistic can be used to test hypotheses and derive confidence regions. Hence, the empirical likelihood approach proposed for alignment possesses the self‐normalisation property, under a design‐based approach. The proposed approach accommodates large sampling fractions, stratification and population level auxiliary information. It is particularly well suited for inference about small domains, when data are skewed. It includes implicit adjustments when the samples considerably differ in size. The confidence regions are constructed without the need for variance estimates, joint‐inclusion probabilities, linearisation and re‐sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.