Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Bisphenol A (BPA) is an extremely common polymer that is used in typical everyday products throughout the world, especially in food and beverage containers. Within the last ten years, it has been found that the BPA monomer tends to leach into foodstuffs, and nanogram concentrations of it may cause a variety of deleterious health effects. These health problems are very evident in developing children and in young adults. The aim of this study was to expose developing pigs to dietary BPA at both legally acceptable and ten-fold higher levels. Livers that had been exposed to BPA showed vacuolar degeneration, sinusoidal dilatation, vascular congestion and glycogen depletion that increased with exposure levels. Furthermore, the livers of these models were then examined for irregularities and double-labeled immunofluorescence was used to check the innervated hepatic samples for varying neuronal expression of selected neuronal markers in the parasympathetic nervous system (PSNS). It was found that both the PSNS and all of the neuronal markers showed increased expression, with some of them being significant even at recommended safe exposure levels. The implications are quite serious since these effects have been observed at recommended safe levels with expression increasing in-line with exposure levels. The increased neuronal markers studied here have been previously correlated with behavioral/psychological disorders of children and young adults, as well as with childhood obesity and diabetes. However, further research must be performed in order to develop a mechanism for the above-mentioned correlations.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) is a genome editing tool that has recently caught enormous attention due to its novelty, feasibility, and affordability. This system naturally functions as a defense mechanism in bacteria and has been repurposed as an RNA-guided DNA editing tool. Unlike zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 takes advantage of an RNA-guided DNA endonuclease enzyme, Cas9, which is able to generate double-strand breaks (DSBs) at specific genomic locations. It triggers cellular endogenous DNA repair pathways, contributing to the generation of desired modifications in the genome. The ability of the system to precisely disrupt DNA sequences has opened up new avenues in our understanding of amyotrophic lateral sclerosis (ALS) pathogenesis and the development of new therapeutic approaches. In this review, we discuss the current knowledge of the principles and limitations of the CRISPR/Cas9 system, as well as strategies to improve these limitations. Furthermore, we summarize novel approaches of engaging the CRISPR/Cas9 system in establishing an adequate model of neurodegenerative disease and in the treatment of SOD1-linked forms of ALS. We also highlight possible applications of this system in the therapy of ALS, both the inherited type as well as ALS of sporadic origin.
The transplantation of neural stem cells (NSCs) capable of regenerating to the cells of the central nervous system (CNS) is a promising strategy in the treatment of CNS diseases and injury. As previous studies have highlighted mesenchymal stem cells (MSCs) as a source of NSCs, this study aimed to develop a feasible, efficient, and reproducible method for the neural induction of MSCs isolated from Wharton's jelly (hWJ-MSCs). We induced neural differentiation in a monolayer culture using epidermal growth factor, basic fibroblast growth factor, N2, and B27 supplements. This resulted in a homogenous population of proliferating cells that expressed certain neural markers at both the protein and mRNA levels. Flow cytometry and immunocytochemistry confirmed the expression of neural markers: nestin, sex-determining region Y (SRY) box 1 and 2 (SOX1 and SOX2), microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). The qRT-PCR analysis revealed significantly enhanced expression of nestin and MAP2 in differentiated cells. This study confirms that it is possible to generate NSCs-like cells from hWJ-MSCs in a 2D culture using a practical method. However, the therapeutic effectiveness of such differentiated cells should be extended to confirm the terminal differentiation ability and electrophysiological properties of neurons derived from them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.