Thermally aggregated, endogenous proteins of Escherichia coli form a distinct fraction, denoted S, which is separable by sucrose-density-gradient centrifugation. It was shown earlier that DnaK, DnaJ, IbpA and IbpB heat-shock proteins are associated with the S fraction. Comparison of the rise and decay of the S fraction in mutants defective for heat-shock proteases Lon (La), Clp, HtrA (DegP, Do) and in wild-type strains made studies of proteolysis and the function of the heat-shock response possible in vivo. Different timing and the extent of action of particular proteases was revealed by the initial size and decay kinetics of the S fraction. The proteases Lon, Clp, and HtrA all participated in removal of the aggregated proteins. Mutation in the gene encoding ClpB caused the most prominent effect (47% stabilization of the S fraction). The correlation between the disappearance of the S fraction and proteolytic activity was supported by the result of the in vitro reaction. Approximately one third of the isolated S fraction was converted to trichloroacetic acid-soluble products by the purified HtrA protease. Mg2+ ions stimulated the reaction, in contrast to the reaction of the HtrA protease with casein. The digestion of the aggregated proteins, unlike the digestion of casein, by HtrA protease in vitro was inhibited by added DnaJ, which might reflect protection of the aggregated proteins in vivo by DnaJ from excessive degradation. One might expect that such an activity of DnaJ would promote denatured protein renaturation versus proteolysis. Moreover, among the aggregated proteins that are discernible by electrophoresis, none could be identified as being more susceptible than any other to HtrA degradation. The separation pattern of these proteins before and after the in vitro digestion did not show a difference corresponding to the loss of about 30% of constituting proteins. This was interpreted as recognition by the HtrA protease of a state of protein denaturation rather than specific amino acid sequences in particular proteins. We conclude that the fraction consisting of proteins heat-aggregated in vivo (i.e. the S fraction) contains endogenous substrates for the heat-shock proteases tested. Their use for in vitro reaction reveals information that is in some respects different from that obtained with exogenous substrates such as casein.
The small heat shock proteins are ubiquitous stress proteins proposed to increase cellular tolerance to heat shock conditions. We isolated IbpA, the Escherichia coli small heat shock protein, and tested its ability to keep thermally inactivated substrate proteins in a disaggregation competent state. We found that the presence of IbpA alone during substrate thermal inactivation only weakly influences the ability of the bi-chaperone Hsp70-Hsp100 system to disaggregate aggregated substrate. Similar minor effects were observed for IbpB alone, the other E. coli small heat shock protein. However, when both IbpA and IbpB are simultaneously present during substrate inactivation they efficiently stabilize thermally aggregated proteins in a disaggregation competent state. The properties of the aggregated protein substrates are changed in the presence of IbpA and IbpB, resulting in lower hydrophobicity and the ability of aggregates to withstand sizing chromatography conditions. IbpA and IbpB form mixed complexes, and IbpA stimulates association of IbpB with substrate.The proper conformation of proteins is challenged by stress conditions. Exposure to extreme heat shock conditions results in a massive aggregation of proteins inside both prokaryotic and eukaryotic cells (1-3). Chaperones from the Hsp100 family, that is ClpB in Escherichia coli and Hsp104 in the yeast Saccharomyces cerevisiae, were implicated in the disaggregation reaction, because aggregated proteins were not eliminated in either clpB or HSP104 deletion strains (1-3). Additionally, the clpB and HSP104 gene products were identified as factors conferring thermotolerance in E. coli and S. cerevisiae (4 -7). However, in vitro studies on the reactivation of aggregated proteins showed that chaperones from the Hsp100 family alone are not sufficient for disaggregation and refolding. Other chaperone proteins are also involved in this process. E. coli Hsp70 (DnaK) and its cochaperones (DnaJ and GrpE) cooperate with ClpB and form a bi-chaperone system capable of efficient disaggregation of aggregated proteins (3,8,9). Analogous Hsp100-Hsp70 bi-chaperone systems able to disaggregate denatured protein substrates in vitro were established using chaperones from other bacterial species (10), as well as from yeast cytosol (11) and mitochondria (12, 13). However, the efficiency of refolding reaction catalyzed by these bichaperone systems depends strongly on the physical properties of protein aggregates. It was proposed that small heat shock proteins (sHsps) 1 associate with aggregated proteins and change their physical properties in such a way that chaperone-mediated disaggregation and refolding become much more efficient (14 -19). However, little is known about the molecular mechanism of these processes.Small heat shock proteins are widely distributed both in prokaryotes and eukaryotes. Members of this diverse protein family are characterized by relatively low monomeric molecular masses (15-43 kDa) and a conserved stretch of ϳ100 amino acid residues (reviewed in Refs. 20 and ...
Persister cells (persisters) are transiently tolerant to antibiotics and usually constitute a small part of bacterial populations. Persisters remain dormant but are able to re-grow after antibiotic treatment. In this study we found that the frequency of persisters correlated to the level of protein aggregates accumulated in E. coli stationary-phase cultures. When 3-(N-morpholino) propanesulfonic acid or an osmolyte (trehalose, betaine, glycerol or glucose) were added to the growth medium at low concentrations, proteins were prevented from aggregation and persister formation was inhibited. On the other hand, acetate or high concentrations of osmolytes enhanced protein aggregation and the generation of persisters. We demonstrated that in the E. coli stationary-phase cultures supplemented with MOPS or a selected osmolyte, the level of protein aggregates and persister frequency were not correlated with such physiological parameters as the extent of protein oxidation, culturability, ATP level or membrane integrity. The results described here may help to understand the mechanisms underlying persister formation.
The roles of the Escherichia coli IbpA and IbpB chaperones in protection of heat-denatured proteins against irreversible aggregation in vivo were investigated. Overproduction of IbpA and IbpB resulted in stabilization of the denatured and reversibly aggregated proteins (the S fraction), which could be isolated from E. coli cells by sucrose gradient centrifugation. This finding is in agreement with the present model of the small heat-shock proteins' function, based mainly on in vitro studies. Deletion of the ibpAB operon resulted in almost twofold increase in protein aggregation and in inactivation of an enzyme (fructose-1,6-biphosphate aldolase) in cells incubated at 50 SC for 4 h, decreased efficiency of the removal of protein aggregates formed during prolonged incubation at 50 SC and affected cell viability at this temperature. IbpA/B proteins were not needed for removal of protein aggregates or for the enzyme protection/renaturation in cells heat shocked at 50 SC for 15 min. These results show that the IbpA/B proteins are required upon an extreme, long-term heat shock. Overproduction of IbpA but not IbpB caused an increase of the level of β-lactamase precursor, which was localized in the S fraction, together with the IbpA protein, which suggests that the unfolded precursor binds to IbpA but not to IbpB. Although in the wild-type cells both E. coli small heatshock proteins are known to localize in the S fraction, only 2 % of total IbpB co-localized with the aggregated proteins in the absence of IbpA, while in the absence of IbpB, the majority of IbpA was present in the aggregates fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.