The influence of (+)-usnic acid on rates of gas exchange (photosynthesis, respiration, and transpiration) in long-term cultivation of tomato plants was studied. The effect was dose-dependent. Plants grown in media containing the maximum concentration of (+)-usnic acid (30 muM) had photosynthetic and respiration rates reduced by 41% and 80%, respectively. The effect on photosynthesis rate may be the result of a multidirectional effect at various stages of this process, which at the highest usnic acid concentration underwent reduction: content of chlorophylls by 30%, carotenoids by 35%, and Hill reaction activity by 75%. Usnic acid also raises the susceptibility of chlorophyll to photodegradation. Under some conditions, transpiration was reduced by 2.1-fold in light and 3.7-fold in dark. This result was correlated with (1) an increase in the diffusive resistance of the stomata (3.1-fold in upper and 1.5-fold in lower surface of leaf), (2) a reduction of stomata density (by 60% on upper and 40% on lower surface), and (3) a 12.3-fold decrease in root hydraulic conductance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.