X-linked hypophosphatemic rickets (HYP) is a dominant disorder characterised by impaired phosphate uptake in the kidney, which is likely to be caused by abnormal regulation of sodium phosphate cotransport in the proximal tubules. By positional cloning, we have isolated a candidate gene from the HYP region in Xp22.1. This gene exhibits homology to a family of endopeptidase genes, members of which are involved in the degradation or activation of a variety of peptide hormones. This gene (which we have called PEX) is composed of multiple exons which span at least five cosmids. Intragenic non-overlapping deletions from four different families and three mutations (two splice sites and one frameshift) have been detected in HYP patients, which suggest that the PEX gene is involved in the HYP disorder.
Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.
About 20% of patients with mucopolysaccharidosis type II (MPS II) have gross structural rearrangements involving the iduronate-sulfatase (IDS) gene in Xq27.3-q28. A nearby IDS pseudogene (IDS-2) promotes nonallelic recombination between highly homologous sequences. Here we describe major rearrangements due to gene/pseudogene recombination. In two unrelated patients, partial IDS gene deletions were found joining introns 3 and 7 of the IDS gene together with gene to pseudogene conversion in the area of breakpoints. In a third patient, a junction between intron 3 of IDS-2 and intron 7 of IDS was seen that was due to a deletion and inversion of the 5' part of the gene. Characterisation of breakpoints in six patients with large inversions revealed that all recombinations of this type occurred in the same area of homology between IDS and IDS-2; they were molecularly balanced, and accompanied by gene conversions in most cases. Apart from diagnostic implications, such naturally occurring recombination 'hot spots' may allow some insight into general features of crossover events in mammals.
Nijmegen breakage syndrome (NBS) is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition, in particular to lymphoma and leukemia. Recently, significantly higher frequencies of heterozygous carriers of the Slavic founder NBS1 mutation, 657del5, were found in Russian children with sporadic lymphoid malignancies, and in Polish adults with non-Hodgkin lymphoma (NHL). In addition, the substitution 643C>T (R215W) has also been found in excess among children with acute lymphoblastic leukemia (ALL). In an attempt to asses the contribution of both mutations to the development of sporadic lymphoid malignancies, we analyzed DNA samples from a large group of Polish pediatric patients. The NBS1 mutation 657del5 on one allele was found in 3 of 270 patients with ALL and 2 of 212 children and adolescents with NHL; no carrier was found among 63 patients with Hodgkin lymphoma (HL). No carriers of the variant R215W were detected in any studied group. The relative frequency of the 657del5 mutation was calculated from a total of 6,984 controls matched by place of patient residence, of whom 42 were found to be carriers (frequency 5 0.006). In the analyzed population with malignancies, an increased odds ratio for the occurrence of mutation 657del5 was found in comparison with the control Polish population (OR range 1.48-1.85, 95% confidence interval 1.18-2.65). This finding indicates that the frequency of the mutation carriers was indeed increased in patients with ALL and NHL (p < 0.05). Nonetheless, NBS1 gene heterozygosity is not a major risk factor for lymphoid malignancies in childhood and adolescence. ' 2005 Wiley-Liss, Inc.Key words: lymphoid tissue malignancies; childhood and adolescence; NBS1 gene; 657del5 mutation; Nijmegen breakage syndrome Nijmegen breakage syndrome (NBS) (OMIM *251260) is a human autosomal recessive disease characterized by microcephaly, immunodeficiency, hypersensitivity to ionizing radiation and a very high incidence of cancer, particularly of lymphoid origin.1,2 The disease seems to be more prevalent among Central and Eastern European populations, with Polish patients constituting approximately half of all registered NBS patients worldwide. The great majority of NBS patients (>90%) share a pathogenic truncating mutation, 657del5, within exon 6 of the NBS1 gene. 3The NBS1 gene encodes a protein called nibrin or p95NBS1, which forms a multimeric complex with hMRE11 and hRAD50 (N/M/R complex) involved in recombination repair of DNA double-strand breaks (DNA DSBs) in yeast and mammals.3,4 DNA DSBs occur as intermediates in physiological events, such as V(D)J recombination during early B and T cell development and immunoglobulin (Ig) class switch in mature B cells, but most frequently are generated by mutagenic agents such as ionizing radiation and radio-mimetic chemicals. DNA DSBs represent the most serious DNA damage, which, if not repaired accurately, can result in genomic instability, including chromosome rearrangements or gene mutations, and finally...
The NBN (NBS1) gene belongs to a group of double-strand break repair genes. Mutations in any of these genes cause genome instability syndromes and contribute to carcinogenesis. NBN gene mutations cause increased tumor risk in Nijmegen breakage syndrome (NBS) homozygotes as well as in NBN heterozygotes. NBS patients develop different types of malignancies; among solid tumors, medulloblastoma (MB), an embryonal tumor of the cerebellum, has been reported most frequently. The majority of medulloblastomas occur sporadically, some of them manifest within familial cancer syndromes. Several signaling pathways are known to be engaged in hereditary and sporadic MB. The aim of our study was to identify mutations in selected exons of the NBN gene and to determine the frequency of the most common NBN gene mutations in pediatric patients with different types of medulloblastoma. We screened a total of 104 patients with MB and identified 7 heterozygous carriers (6.7%) of two different germ-line mutations of NBN gene; all of them had classic MB. Our results indicate that heterozygous carriers of the germ-line NBN gene mutations (c.511A>G and c.657_661del5) may exhibit increased susceptibility to developing MB. The risk of medulloblastoma is estimated to be 3.0 (for c.511A>G) and 4.86 (for c.657_661del5) times higher than in the general Polish population (p<0.05). These results suggest that heterozygous NBN germ-line mutations may contribute to the etiology of medulloblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.