Numerous reports have recently focused on various aspects of adverse trends in male reproductive health, such as the rising incidence of testicular cancer; low and probably declining semen quality; high and possibly increasing frequencies of undescended testis and hypospadias; and an apparently growing demand for assisted reproduction. Due to specialization in medicine and different ages at presentation of symptoms, reproductive problems used to be analysed separately by various professional groups, e.g. paediatric endocrinologists, urologists, andrologists and oncologists. This article summarizes existing evidence supporting a new concept that poor semen quality, testis cancer, undescended testis and hypospadias are symptoms of one underlying entity, the testicular dysgenesis syndrome (TDS), which may be increasingly common due to adverse environmental influences. Experimental and epidemiological studies suggest that TDS is a result of disruption of embryonal programming and gonadal development during fetal life. Therefore, we recommend that future epidemiological studies on trends in male reproductive health should not focus on one symptom only, but be more comprehensive and take all aspects of TDS into account. Otherwise, important biological information may be lost.
Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis1,2, but the causative germline and somatic mutations occur in separate cells at different times of an organism’s life. Here we unify these processes for mutations arising in male germ cells that show a paternal age effect3. Screening of 30 spermatocytic seminomas4,5 for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G encoding K650E, which causes thanatophoric dysplasia in the germline)6 and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA showed that the FGFR3 mutation increases with paternal age, with a similar mutation spectrum at the K650 codon to that in bladder cancer7,8. Most spermatocytic seminomas show increased immunoreactivity for FGFR3 and/or HRAS. We propose that paternal age effect mutations activate a common “selfish” pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer.
Deletions of the DAZ gene family in distal Yq11 are always associated with deletions of the azoospermia factor c (AZFc) region, which we now estimate extends to 4.94 Mb. Because more Y gene families are located in this chromosomal region, and are expressed like the DAZ gene family only in the male germ line, the testicular pathology associated with complete AZFc deletions cannot predict the functional contribution of the DAZ gene family to human spermatogenesis. We therefore established a DAZ gene copy specific deletion analysis based on the DAZ-BAC sequences in GenBank. It includes the deletion analysis of eight DAZ-DNA PCR markers [six DAZ-single nucleotide varients (SNVs) and two DAZ-sequence tag sites (STS)] selected from the 5' to the 3'end of each DAZ gene and a deletion analysis of the gene copy specific EcoRV and TaqI restriction fragments identified in the internal repetitive DAZ gene regions (DYS1 locus). With these diagnostic tools, 63 DNA samples from men with idiopathic oligozoospermia and 107 DNA samples from men with proven fertility were analysed for the presence of the complete DAZ gene locus, encompassing the four DAZ gene copies. In five oligozoospermic patients, we found a DAZ-SNV/STS and DYS1/EcoRV and TaqI fragment deletion pattern indicative for deletion of the DAZ1 and DAZ2 gene copies; one of these deletions could be identified as a 'de-novo' deletion because it was absent in the DAZ locus of the patient's father. The same DAZ deletions were not found in any of the 107 fertile control samples. We therefore conclude that the deletion of the DAZ1/DAZ2 gene doublet in five out of our 63 oligozoospermic patients (8%) is responsible for the patients' reduced sperm numbers. It is most likely caused by intrachromosomal recombination events between two long repetitive sequence blocks (AZFc-Rep1) flanking the DAZ gene structures.
Testicular germ cell cancers in young adult men derive from a precursor lesion called carcinoma in situ (CIS) of the testis. CIS cells were suggested to arise from primordial germ cells or gonocytes. However, direct studies on purified samples of CIS cells are lacking. To overcome this problem, we performed laser microdissection of CIS cells. Highly enriched cell populations were obtained and subjected to gene expression analysis. The expression profile of CIS cells was compared with microdissected gonocytes, oogonia, and cultured embryonic stem cells with and without genomic aberrations. Three samples of each tissue type were used for the analyses. Unique expression patterns for these developmentally very related cell types revealed that CIS cells were very similar to gonocytes because only five genes distinguished these two cell types. We did not find indications that CIS was derived from a meiotic cell, and the similarity to embryonic stem cells was modest compared with gonocytes. Thus, we provide new evidence that the molecular phenotype of CIS cells is similar to that of gonocytes. Our data are in line with the idea that CIS cells may be gonocytes that survived in the postnatal testis. We speculate that disturbed development of somatic cells in the fetal testis may play a role in allowing undifferentiated cells to survive in the postnatal testes. The further development of CIS into invasive germ cell tumors may depend on signals from their postpubertal niche of somatic cells, including hormones and growth factors from Leydig and Sertoli cells. [Cancer Res 2009;69(12):5241-50]
Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients with higher grade sex chromosome aneuploidies. It has been proposed that tall stature in sex chromosome aneuploidy is related to an overexpression of SHOX, although the copy number of SHOX has not been evaluated in previous studies. Our aims were therefore: (1) to assess stature in 305 patients with sex chromosome aneuploidy and (2) to determine the number of SHOX copies in a subgroup of these patients (n =255) these patients and 74 healthy controls. Median height standard deviation scores in 46,XX males (n =6) were −1.2 (−2.8 to 0.3), +0.9 (−2.2 to + 4.6) in 47,XXY (n =129), +1.3 (−1.8 to +4.9) in 47,XYY (n =44), +1.1 (−1.9 to +3.4) in 48,XXYY (n =45), +1.8 (−2.0 to +3.2) in 48,XXXY (n =9), and −1.8 (−4.2 to −0.1) in 49,XXXXY (n =10). Median height standard deviation scores in patients with 45,X (n =6) were −2.6 (−4.1 to −1.6), +0.7 (−0.9 to +3.2) in 47,XXX (n =−40), −0.6 (−1.9 to +2.1) in 48,XXXX (n =13), and −1.0 (−3.5 to −0.8) in 49,XXXXX (n =3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.