A 5-year sediment trap survey in the upwelling area off Cape Blanc (NW Africa) provides information on the seasonal and annual resting cyst production of dinoflagellates, their sinking characteristics and preservation potential. Strong annual variation in cyst production characterizes the region. Cyst production of generally all investigated species, including Alexandrium pseudogonyaulax (Biecheler) T. Horig. ex T. Kita et Fukuyo (cyst genus Impagidinium) and Gonyaulax spinifera (Clap. et J. Lachm.) Diesing (cyst genus Nematosphaeropsis) was enhanced with increasing upper water nutrient and trace-element concentrations. Cyst production of Lingulodinium polyedrum (F. Stein) J. D. Dodge was the highest at the transition between upwelling and upwellingrelaxation. Cyst production of Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium monospinum (Paulsen) K. A. F. Zonn. et B. Dale, and Protoperidinium stellatum (D. Wall) Balech, and heterotrophic dinoflagellates forming Brigantedinium spp. and Echinidinium aculeatum Zonn., increased most pronouncedly during upwelling episodes. Production of Protoperidinium conicum (Gran) Balech and Protoperidinium pentagonum (Gran) Balech cysts and total diatom valves were related, providing evidence of a predator-prey relationship. The export cyst-flux of E. aculeatum, P. americanum, P. monospinum, and P. stellatum was strongly linked to the flux of total diatom valves and CaCO 3 , whereas the export production of Echinidinium granulatum Zonn. and Protoperidinium subinerme (Paulsen) A. R. Loebl. correlated with total organic carbon, suggesting potential consumption of diatoms, prymnesiophytes, and organic matter, respectively. Sinking velocities were at least 274 m AE d )1 , which is in range of the diatomand coccolith-based phytoplankton aggregates and ''slower'' fecal pellets. Species-selective degradation did not occur in the water column, but on the ocean floor.
Fossil dinoflagellate cyst assemblages are increasingly used in paleoclimatic research to establish paleoenvironmental reconstructions. To obtain reliable reconstructions, it is essential to know which physical factors influence the cyst production. Most information about the relationship between variations in physical parameters and cyst production is known from middle and higher latitudes. Information from the (sub)tropics is rare. To increase this information, the temporal variation in cyst assemblages from the upwelling area off north-west Africa (off Mauritania) has been compared to environmental conditions of the upper water column. Samples were collected by the sediment trap CB9, off north-west Africa (Cape Blanc, 21∞15¢2≤N, 20∞42¢2≤W) between 11 June 1998 and 7 November 1999 at 27.5-day intervals. Off Cape Blanc, upwelling occurs throughout the year with variable intensity. This region is also characterized by frequently occurring Saharan dust storms. Seasonal variations in dust input, upwelling intensity and sea surface temperature are reflected by the production of organic-walled dinoflagellate cyst assemblages. Several cyst taxa are produced throughout the sampling interval, with the highest fluxes at times of strongest upwelling relaxation and/or dust input (Echinidinium aculeatum Zonneveld, Echinidinium delicatum Zonneveld, Echinidinium granulatum Zonneveld, Echinidinium spp., Impagidinium aculeatum (Wall) Lentin et Williams, Impagidinium sphaericum (Wall) Lentin et Williams, Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium stellatum (Wall in Wall et Dale) Rochon et al., Protoperidinium spp., Selenopemphix nephroides (Benedek) Benedek et Sarjeant and Selenopemphix quanta (Bradford) Matsuoka). Species such as, for example, Bitectatodinium spongium (Zonneveld) Zonneveld et Jurkschat and Impagidinium patulum (Wall) Stover et Evitt do not show any production pattern related to a particular season of the year or to specific environmental conditions in the upper water column. The production of cysts of Protoperidinium monospinum (Paulsen) Zonneveld et Dale is restricted to intervals with increased nutrient concentrations in upper waters when sea surface temperatures at the sampling site is below approximately 24∞C.
Fossil dinoflagellate cyst assemblages are increasingly used in paleoclimatic research to establish paleoenvironmental reconstructions. To obtain reliable reconstructions, it is essential to know which physical factors influence the cyst production. Most information about the relationship between variations in physical parameters and cyst production is known from middle and higher latitudes. Information from the (sub)tropics is rare. To increase this information, the temporal variation in cyst assemblages from the upwelling area off north-west Africa (off Mauritania) has been compared to environmental conditions of the upper water column. Samples were collected by the sediment trap CB9, off north-west Africa (Cape Blanc, 21∞15¢2≤N, 20∞42¢2≤W) between 11 June 1998 and 7 November 1999 at 27.5-day intervals. Off Cape Blanc, upwelling occurs throughout the year with variable intensity. This region is also characterized by frequently occurring Saharan dust storms. Seasonal variations in dust input, upwelling intensity and sea surface temperature are reflected by the production of organic-walled dinoflagellate cyst assemblages. Several cyst taxa are produced throughout the sampling interval, with the highest fluxes at times of strongest upwelling relaxation and/or dust input (Echinidinium aculeatum Zonneveld, Echinidinium delicatum Zonneveld, Echinidinium granulatum Zonneveld, Echinidinium spp., Impagidinium aculeatum (Wall) Lentin et Williams, Impagidinium sphaericum (Wall) Lentin et Williams, Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium stellatum (Wall in Wall et Dale) Rochon et al., Protoperidinium spp., Selenopemphix nephroides (Benedek) Benedek et Sarjeant and Selenopemphix quanta (Bradford) Matsuoka). Species such as, for example, Bitectatodinium spongium (Zonneveld) Zonneveld et Jurkschat and Impagidinium patulum (Wall) Stover et Evitt do not show any production pattern related to a particular season of the year or to specific environmental conditions in the upper water column. The production of cysts of Protoperidinium monospinum (Paulsen) Zonneveld et Dale is restricted to intervals with increased nutrient concentrations in upper waters when sea surface temperatures at the sampling site is below approximately 24∞C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.