It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gene expression. However, association of those mechanisms, i.e., drug resistance and telomerase alterations, is not fully understood yet. We review the current theories on the aspect of the role of telomerase in cancer cells resistance to therapy. We believe that revealing/unravelling this correlation might significantly contribute to an increased efficiency of cancer cells elimination, especially the most difficult ones, i.e., drug resistant.
Telomerase is perceived as an immortality enzyme that enables passing the Hayflick limit. Its main function is telomere restoration but only in a limited group of cells, including cancer cells. Since it is found in a vast majority of cancer cells, it became a natural target for cancer therapy. However, it has much more functions than just altering the metabolism of telomeres-it also reveals numerous so-called non-canonical functions. Thus, a question arises whether it is always beneficial to turn it off when planning a cancer strategy and considering potential side effects? The purpose of this review is to discuss some of the recent discoveries about telomere-independent functions of telomerase in the context of cancer therapy and potential side effects.
Protein kinase Cε (PKCε) is a representative member of a family of novel PKC isoforms that are independent of calcium, but can be activated by phorbol esters, diacylglycerol (DAG) and phosphatidylserine (PS). This kinase is capable of modulating crucial cell functions, including proliferation, differentiation and survival. These activities depend on enzyme translocation to subcellular compartments upon binding DAG, PS or exogenous stimulators. PKCε initiates malignant transformation of cells through its effects on the Ras/Raf/MAPK pathway and displays the greatest carcinogenic potential of all PKC isoforms. PKCε also promotes tumor metastatic capacity and resistance to anti-cancer therapy. Overexpression of PKCε is found in numerous cancers including colon, breast, stomach, prostate, thyroid and lung and is considered an important marker of negative disease outcome. Although overexpression of PKCε is observed in tumors, it is not found in healthy tissues hence it has been suggested as a diagnostic marker or a putative target for specific inhibitors used for treatment of cancer. Research on selective inhibition of PKCε is under way and diverse approaches may become clinically applicable anti-tumor strategies. Suppression of the PKCε-encoding gene achieved through the antisense cDNA, suppression of PKCε with RNAi and inhibition achieved with translocation-inhibitory peptides may provide novel treatment strategies for cancer.
Human telomeres were one of the first discovered and characterized sequences forming quadruplex structures. Association of these structures with oncogenic and tumor suppressor proteins suggests their important role in cancer development and therapy efficacy. Since cationic porphyrin TMPyP4 is known as G-quadruplex stabilizer and telomerase inhibitor, the aim of the study was to analyze the anticancer properties of this compound in two different human breast-cancer MCF7 and MDA-MB-231 cell lines. The cytotoxicity of TMPyP4 alone or in combination with doxorubicin was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) and clonogenic assays, and the cell-cycle alterations were analyzed by flow cytometry. Telomerase expression and activity were evaluated using qPCR and telomeric repeat amplification protocol (TRAP) assays, respectively. The contribution of G-quadruplex inhibitor to protein pathways engaged in cell survival, DNA repair, adhesion, and migration was performed using immunodetection. Scratch assay and functional assessment of migration and cell adhesion were also performed. Consequently, it was revealed that in the short term, TMPyP4 neither revealed cytotoxic effect nor sensitized MCF7 and MDA-MB-231 to doxorubicin, but altered breast-cancer cell adhesion and migration. It suggests that TMPyP4 might substantially contribute to a significant decrease in cancer cell dissemination and, consequently, cancer cell survival reduction. Importantly, this effect might not be associated with telomeres or telomerase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.