Dynactin is a complex motor protein involved in the retrograde axonal transport disturbances of which may lead to amyotrophic lateral sclerosis (ALS). Mice with hSOD1G93A mutation develop ALS-like symptoms and are used as a model for the disease studies. Similar symptoms demonstrate Cra1 mice, with Dync1h1 mutation. Dynactin heavy (DCTN1) and light (DCTN3) subunits were studied in the CNS of humans with sporadic ALS (SALS), mice with hSOD1G93A (SOD1/+), Dync1h1 (Cra1/+), and double (Cra1/SOD1) mutation at presymptomatic and symptomatic stages. In SALS subjects, in contrast to control cases, expression of DCTN1-mRNA but not DCTN3-mRNA in the motor cortex was higher than in the sensory cortex. However, the mean levels of DCTN1-mRNA and protein were lower in both SALS cortexes and in the spinal cord than in control structures. DCTN3 was unchanged in brain cortexes but decreased in the spinal cord on both mRNA and protein levels. In all SALS tissues immunohistochemical analyses revealed degeneration and loss of neuronal cells, and poor expression of dynactin subunits. In SOD1/+ mice both subunits expression was significantly lower in the frontal cortex, spinal cord and hippocampus than in wild-type controls, especially at presymptomatic stage. Fewer changes occurred in Cra1/SOD1 and Cra1/+ mice.It can be concluded that in sporadic and SOD1-related ALS the impairment of axonal retrograde transport may be due to dynactin subunits deficiency and subsequent disturbances of the whole dynein/dynactin complex structure and function. The Dync1h1 mutation itself has slight negative effect on dynactin expression and it alleviates the changes caused by SOD1G93A mutation.
Background: Amyotrophic lateral sclerosis is a fatal motor neuron degenerative disease. Most cases are sporadic (SALS), and approximately 10% are familial (FALS) among which over 20% are linked to the SOD1 mutation. Both SALS and FALS have been associated with retrograde axonal transport defects. Kinesins (KIFs) are motor proteins involved mainly in anterograde transport; however, some also participate in retrograde transport. Objective: The purpose of the study was to investigate and compare the expression of kinesins involved in anterograde (KIF5A, 5C) and retrograde (KIFC3/C2) axonal transport in SALS in humans and FALS in mice with the hSOD1G93A mutation. Methods: The studies were conducted on various parts of the CNS from autopsy specimens of SALS patients, and transgenic mice at presymptomatic and symptomatic stages using real-time quantitative PCR and reverse-transcription PCR. Results: All KIF expression in the motor cortex of individual SALS subjects was higher than in the adjacent sensory cortex, in contrast to the expression in control brains. It was also significantly higher in the frontal cortex of symptomatic but not presymptomatic mice compared to wild-type controls. However, the mean KIF expression in the SALS motor and sensory cortexes was lower than in control cortexes. To a lesser extent the decrease in KIF mean expression also occurred in human but not in mouse ALS spinal cords and in both human and mouse cerebella. Conclusion: Disturbances in kinesin expression in the CNS may dysregulate both anterograde and retrograde axonal transports leading to motor neuron degeneration.
Tau is a protein involved in regulation of microtubule stability, axonal differentiation and transport. Alteration of retrograde transport may lead to motor neuron degeneration. Thus alternative mRNA splicing and expression of tau isoforms were studied in a transgenic mouse model harboring the human SOD1 G93A mutation. The studies were performed on cortex, hippocampus and spinal cord of 64- and 120-day-old animals (presymptomatic and symptomatic stage) and wild type controls. Exon 10 was found in all studied tissues. The 2N isoform containing exons 2 and 3 (+2+3) and the 1N (+2-3) predominated over the 0N (-2-3) in brain regions of the studied mice. The 2N expression was significantly lower in cortex and hippocampus of symptomatic animals compared to analogue control tissues. The decrease in 2N expression resulted in lower levels of total tau mRNA and tau protein. No changes in tau expression were observed in spinal cord of studied animals.
Due to controversy about the involvement of Dync1h1 mutation in pathogenesis of motor neuron disease, we investigated expression of tau protein in transgenic hybrid mice with Dync1h1 (so-called Cra1/+), SOD1G93A (SOD1/+), double (Cra1/SOD1) mutations and wild-type controls. Total tau-mRNA and isoforms 0, 1 and 2 N expression was studied in frontal cortex, hippocampus, spinal cord and cerebellum of presymptomatic and symptomatic animals (age 70, 140 and 365 days). The most significant differences were found in brain cortex and cerebellum, but not in hippocampus and spinal cord. There were less changes in Cra1/SOD1 double heterozygotes compared to mice harboring single mutations. The differences in total tau expression and in profile of its isoforms between Cra1/+ and SOD1/+ transgenics indicate a distinct pathogenic entity of these two conditions.
The expression of glutathione S-transferase pi (GST pi), an enzyme responsible for inactivation of a large variety of toxic compounds was studied in spinal cord, motor and sensory brain cortex obtained from patients who died in the course of amyotrophic lateral sclerosis (ALS). The studies were performed on formalin-fixed, paraffin-embedded (FFPE) and freshly frozen tissues. The method of RNA isolation from FFPE was modified. A significant decrease of GST pi-mRNA expression was found in cervical spinal cord and motor brain cortex of ALS subjects comparing to analogue control tissues (P<0.01), as well as in motor cortex of ALS subjects comparing to their sensory cortex (P<0.05). In spinal cords the decrease in GST pi-mRNA expression was accompanied by a decrease of GST pi protein level. Results indicated lowered GST pi expression on both mRNA and protein levels in the regions of nervous system affected by ALS. The non-properly inactivated by GST toxic electrophiles and organic peroxides may thus contribute to motor neurons damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.