BackgroundThe European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families.ResultsGene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets.ConclusionsThe protein families important for chemoreception have now been identified in three coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.
Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n ¼ 31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n ¼ 31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.
In recent years, considerable progress has been made in understanding the molecular mechanisms underlying olfaction in insects. Because of the diverse nature of the gene families involved, this process has largely relied on genomic data. As a consequence, studies have focused on a small subset of species with extensive genomic information. For Lepidoptera, a large order historically crucial to olfactory research, this circumstance has mostly limited advances to the domesticated species Bombyx mori, with some progress in the noctuid Heliothis virescens based on a nonpublic partial genome database. Because of the limited behavioral repertoire and nonexistent ecological importance of Bombyx, molecular data on the tobacco hornworm Manduca sexta are of utmost importance, especially with regards to its position as a classical olfactory model and its complex natural behavior. Here we present the use of transcriptomic and microarray data to identify members of the main olfactory gene families of Manduca. To assess the quality of our data, we correlate information on expressed receptor genes with detailed morphological data on the antennal lobe. Finally, we compare the expression of the near-complete transcript sets in male and female antennae.
The remarkable responsiveness of male moths to female released pheromones is based on the extremely sensitive and selective reaction of highly specialized sensory cells in the male antennae. These cells are supposed to be equipped with male-specific receptors for pheromonal compounds, however, the nature of these receptors is still elusive. By using a combination of genomic sequence analysis and cDNA-library screening, we have cloned various cDNAs of the tobacco budworm Heliothis virescens encoding candidate olfactory receptors. A comparison of all identified receptor types not only highlighted their overall high degree of sequence diversity but also led to the identification of a small group of receptors sharing >40% identity. In RT-PCR analysis it was found that distinct members of this group were expressed exclusively in the antennae of male moths. In situ hybridization experiments revealed that the male-specific expression of these receptor types was confined to antennal cells located beneath sensillar hair structures (sensilla triochoidea), which have been shown to contain pheromone-sensitive neurons. Moreover, two-color double in situhybridization approaches uncovered that cells expressing one of these receptor types were surrounded by cells expressing pheromone-binding proteins, as expected for a pheromone-sensitive sensillum. These findings suggest that receptors like Heliothis receptor 14 -16 (HR14 -HR16) may render antennal cells responsive to pheromones.T he olfactory system of insects, most notably of moths, is renowned for its remarkable sensitivity and selectivity; it has been an invaluable model system for studying fundamental aspects of olfaction (1). Insects detect volatile chemostimulants by means of chemosensory neurons housing in multiporous cuticular hairs, comprising olfactory sensilla (2). These specialized cells generate electrical signals upon interaction with appropriate chemical compounds. Experimental evidence indicating that the underlying chemoelectrical transduction process is mediated by means of odor-activated G protein-secondmessenger cascades, a mechanism used by most chemosensory cells (3), supports the notion that receptors for odorous compounds in insects should be members of the G protein-coupled receptor superfamily; however, it was only with the aid of sequenced genomes that genes encoding candidate odorant receptors from insects were identified recently in fly (4-8), mosquito (9-11), and moth (12) models. Despite the progress in identification and characterization of insect olfactory receptors, receptors for insect pheromones are still elusive. This status is more noteworthy given that the pioneering work in identifying signaling molecules for communication between individuals was performed on insects; in fact, the first known pheromone (bombykol) was isolated from the silkmoth Bombyx mori (13,14). Pheromones, originally defined as chemical compounds that are produced and secreted by individuals and received by other members of the same species in which they release a de...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.