Aims. The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter is a hard X-ray imaging spectrometer, which covers the energy range from 4 to 150 keV. STIX observes hard X-ray bremsstrahlung emissions from solar flares and therefore provides diagnostics of the hottest (⪆10 MK) flare plasma while quantifying the location, spectrum, and energy content of flare-accelerated nonthermal electrons. Methods. To accomplish this, STIX applies an indirect bigrid Fourier imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 coarsely pixelated CdTe detectors to provide information on angular scales from 7 to 180 arcsec with 1 keV energy resolution (at 6 keV). The imaging concept of STIX has intrinsically low telemetry and it is therefore well-suited to the limited resources available to the Solar Orbiter payload. To further reduce the downlinked data volume, STIX data are binned on board into 32 selectable energy bins and dynamically-adjusted time bins with a typical duration of 1 s during flares. Results. Through hard X-ray diagnostics, STIX provides critical information for understanding the acceleration of electrons at the Sun and their transport into interplanetary space and for determining the magnetic connection of Solar Orbiter back to the Sun. In this way, STIX serves to link Solar Orbiter’s remote and in-situ measurements.
The Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -May 2006 has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularized inversion technique, we determine the mean electron flux distribution from count spectra for a selection of events with flat photon spectra in the 15 -20 keV energy range. Such spectral behavior is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range (e.g., a low-energy cutoff in the mean electron spectra of nonthemal particles). We have found 18 cases that exhibit a statistically significant local minimum (a dip) in the range of 13 -19 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction is applied, all low-energy cutoffs in the mean electron spectrum are removed, and hence the low-energy cutoffs in the mean electron spectrum of solar flares above ∼ 12 keV cannot be viewed as real features. If low-energy cutoffs exist in the mean electron spectra, their energies should be less than ∼ 12 keV.
We report observations of an eruptive X2.8 flare on 2013 May 13, which shows two distinct episodes of energy release in the impulsive phase. The first episode is characterized by the eruption of a magnetic flux rope, similar to the energyrelease process in most standard eruptive flares. While the second episode, which is stronger than the first normal one and shows enhanced high-energy X-ray and even γ-ray emissions, is closely associated with magnetic reconnection of a largescale loop in the aftermath of the eruption. The reconnection inflow of the loop leg is observed in the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 304Å passband and accelerates towards the reconnection region to a speed as high as ∼130 km/s. Simultaneously the corresponding outflow jets are observed in the AIA hot passbands with a speed of ∼740 km/s and mean temperature of ∼14 MK. RHESSI observations show a strong burst of hard X-ray (HXR) and γ-ray emissions with hard electron spectra of δ ≈ 3, exhibiting a soft-hard-harder behavior. A distinct altitude decrease of the HXR loop-top source coincides with the inward swing of the loop leg observed in the AIA 304Å passband, which is suggested to be related to the coronal implosion. This fast inflow of magnetic flux contained in the loop leg greatly enhances the reconnection rate and results in very efficient particle acceleration in the secondstep reconnection, which also helps to achieve a second higher temperature peak up to T ≈ 30 MK.
The Spectrometer/Telescope for Imaging X-rays (STIX) is one of six remote sensing instruments on-board Solar Orbiter. The telescope applies an indirect imaging technique that uses the measurement of 30 visibilities, i.e., angular Fourier components of the solar flare X-ray source. Hence, the imaging problem for STIX consists of the Fourier inversion of the data measured by the instrument. In this work, we show that the visibility amplitude and phase calibration of 24 out of 30 STIX sub-collimators has reached a satisfactory level for scientific data exploitation and that a set of imaging methods is able to provide the first hard X-ray images of solar flares from Solar Orbiter. Four visibility-based image reconstruction methods and one count-based are applied to calibrated STIX observations of six events with GOES class between C4 and M4 that occurred in May 2021. The resulting reconstructions are compared to those provided by an optimization algorithm used for fitting the amplitudes of STIX visibilities. We show that the five imaging methods produce results morphologically consistent with the ones provided by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory (SDO/AIA) in UV wavelengths. The $\chi ^{2}$ χ 2 values and the parameters of the reconstructed sources are comparable between methods, thus confirming their robustness.
We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 min before the onset) propagating towards the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with RHESSI hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbons sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 min after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.