Interactions lie at the heart of social organization, particularly in ant societies. Interaction rates are presumed to increase with density, but there is little empirical evidence for this. We manipulated density within carpenter ant colonies of the species Camponotus pennsylvanicus by quadrupling nest space and by manually tracking 6.9 million ant locations and over 3200 interactions to study the relationship between density, spatial organization and interaction rates. Colonies divided into distinct spatial regions on the basis of their underlying spatial organization and changed their movement patterns accordingly. Despite a reduction in both overall and local density, we did not find the expected concomitant reduction in interaction rates across all colonies. Instead, we found divergent effects across colonies. Our results highlight the remarkable organizational resilience of ant colonies to changes in density, which allows them to sustain two key basic colony life functions, that is food and information exchange, during environmental change.
Surveillance plays a crucial role in preventing emerging infectious diseases from becoming epidemic. In circumstances where it is possible to monitor the infection status of certain people, transport hubs, or hospitals, early detection of the disease allows interventions to be implemented before most of the damage can occur, or at least its impact can be mitigated. This paper addresses the question of which nodes we should select in a network of individuals susceptible to some infectious disease in order to minimize the number of casualties. By simulating disease outbreaks on a collection of empirical and synthetic networks we show that the best strategy depends on topological characteristics of the network. For highly modular or spatially embedded networks it is better to place the sentinels on nodes distributed across different regions. However, if the degree heterogeneity is high, then a strategy that targets network hubs is preferred. We further consider the consequences of having an incomplete sample of the network and demonstrate that the value of new information diminishes as more data is collected. Finally we find further marginal improvements using two heuristics informed by known results in graph theory that exploit the fragmented structure of sparse network data.
BackgroundThe symptoms of many infectious diseases influence their host to withdraw from social activity limiting their potential to spread. Successful transmission therefore requires the onset of infectiousness to coincide with a time when the host is socially active. Since social activity and infectiousness are both temporal phenomena, we hypothesize that diseases are most pervasive when these two processes are synchronized.MethodsWe consider disease dynamics that incorporate behavioral responses that effectively shorten the infectious period of the pathogen. Using data collected from face-to-face social interactions and synthetic contact networks constructed from empirical demographic data, we measure the reachability of this disease model and perform disease simulations over a range of latent period durations.ResultsWe find that maximum transmission risk results when the disease latent period (and thus the generation time) are synchronized with human circadian rhythms of 24 h, and minimum transmission risk when latent periods are out of phase with circadian rhythms by 12 h. The effect of this synchronization is present for a range of disease models with realistic disease parameters and host behavioral responses.ConclusionsThe reproductive potential of pathogens is linked inextricably to the host social behavior required for transmission. We propose that future work should consider contact periodicity in models of disease dynamics, and suggest the possibility that disease control strategies may be designed to optimize against the effects of synchronization.Electronic supplementary materialThe online version of this article (10.1186/s12879-018-3117-6) contains supplementary material, which is available to authorized users.
The recent dramatic increase in online data availability has allowed researchers to explore human culture with unprecedented detail, such as the growth and diversification of language. In particular, it provides statistical tools to explore whether word use is similar across languages, and if so, whether these generic features appear at different scales of language structure. Here we use the Google Books N -grams dataset to analyze the temporal evolution of word usage in several languages. We apply measures proposed recently to study rank dynamics, such as the diversity of N -grams in a given rank, the probability that an N -gram changes rank between successive time intervals, the rank entropy, and the rank complexity. Using different methods, results show that there are generic properties for different languages at different scales, such as a core of words necessary to minimally understand a language. We also propose a null model to explore the relevance of linguistic structure across multiple scales, concluding that N -gram statistics cannot be reduced to word statistics. We expect our results to be useful in improving text prediction algorithms, as well as in shedding light on the large-scale features of language use, beyond linguistic and cultural differences across human populations.
Humans and other group-living animals tend to distribute their social effort disproportionately. Individuals predominantly interact with a small number of close companions while maintaining weaker social bonds with less familiar group members. By incorporating this behavior into a mathematical model, we find that a single parameter, which we refer to as social fluidity, controls the rate of social mixing within the group. Large values of social fluidity correspond to gregarious behavior, whereas small values signify the existence of persistent bonds between individuals. We compare the social fluidity of 13 species by applying the model to empirical human and animal social interaction data. To investigate how social behavior influences the likelihood of an epidemic outbreak, we derive an analytical expression of the relationship between social fluidity and the basic reproductive number of an infectious disease. For species that form more stable social bonds, the model describes frequency-dependent transmission that is sensitive to changes in social fluidity. As social fluidity increases, animal-disease systems become increasingly density-dependent. Finally, we demonstrate that social fluidity is a stronger predictor of disease outcomes than both group size and connectivity, and it provides an integrated framework for both density-dependent and frequency-dependent transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.