High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions.
BackgroundSeizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs.MethodsIntracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third, the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic chip for autonomous operation on a wearable device is provided.ResultsThe prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly surpassing an equivalent random predictor for all patients by 42%.ConclusionThis study demonstrates that deep learning in combination with neuromorphic hardware can provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low power consumption and reliable long-term performance.
Noninvasive wearable devices have great potential to aid the management of epilepsy, but these devices must have robust signal quality, and patients must be willing to wear them for long periods of time. Automated machine learning classification of wearable biosensor signals requires quantitative measures of signal quality to automatically reject poor‐quality or corrupt data segments. In this study, commercially available wearable sensors were placed on patients with epilepsy undergoing in‐hospital or in‐home electroencephalographic (EEG) monitoring, and healthy volunteers. Empatica E4 and Biovotion Everion were used to record accelerometry (ACC), photoplethysmography (PPG), and electrodermal activity (EDA). Byteflies Sensor Dots were used to record ACC and PPG, the Activinsights GENEActiv watch to record ACC, and Epitel Epilog to record EEG data. PPG and EDA signals were recorded for multiple days, then epochs of high‐quality, marginal‐quality, or poor‐quality data were visually identified by reviewers, and reviewer annotations were compared to automated signal quality measures. For ACC, the ratio of spectral power from 0.8 to 5 Hz to broadband power was used to separate good‐quality signals from noise. For EDA, the rate of amplitude change and prevalence of sharp peaks significantly differentiated between good‐quality data and noise. Spectral entropy was used to assess PPG and showed significant differences between good‐, marginal‐, and poor‐quality signals. EEG data were evaluated using methods to identify a spectral noise cutoff frequency. Patients were asked to rate the usability and comfort of each device in several categories. Patients showed a significant preference for the wrist‐worn devices, and the Empatica E4 device was preferred most often. Current wearable devices can provide high‐quality data and are acceptable for routine use, but continued development is needed to improve data quality, consistency, and management, as well as acceptability to patients.
Objective: Seizure unpredictability is rated as one of the most challenging aspects of living with epilepsy. Seizure likelihood can be influenced by a range of environmental and physiological factors that are difficult to measure and quantify. However, some generalizable patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit circadian rhythms in their seizure times, and many also show slower, multiday patterns. Seizure cycles can be measured using a range of recording modalities, including self-reported electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile seizure diary app. Methods: Forecasts based on circadian and multiday seizure cycles were tested pseudoprospectively using data from 50 app users (mean of 109 seizures per subject). Individuals' strongest cycles were estimated from their reported seizure times and used to derive the likelihood of future seizures. The forecasting approach was validated using self-reported events and electrographic seizures from the Neurovista dataset, an existing database of long-term electroencephalography that has been widely used to develop forecasting algorithms. Results: The validation dataset showed that forecasts of seizure likelihood based on self-reported cycles were predictive of electrographic seizures for approximately half the cohort. Forecasts using only mobile app diaries allowed users to spend an average of 67.1% of their time in a low-risk state, with 14.8% of their time in a high-risk warning state. On average, 69.1% of seizures occurred during high-risk states and 10.5% of seizures occurred in low-risk states. Significance: Seizure diary apps can provide personalized forecasts of seizure likelihood that are accurate and clinically relevant for electrographic seizures. These results have immediate potential for translation to a prospective seizure forecasting trial using a mobile diary app. It is our hope that seizure forecasting apps will one day give people with epilepsy greater confidence in managing their daily activities. K E Y W O R D Scircadian rhythms, epilepsy, mobile health, multiday rhythms, seizure cycles, seizure forecasting | 777 KAROLY et AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.