Sample preparation is a fundamental step in proteomic methodologies. The quality of the results from a proteomic experiment is dependent on the nature of the sample and the properties of the proteins. In this study, various pre-treatment methods were compared by proteomic analysis; we analysed various rat brain structures after chloroform/methanol, acetone, TCA/acetone and TCA protein precipitation procedures. The protein content of the supernatant was also examined by 2-DE. We found that for four of the rat brain structures, precipitation with chloroform/methanol and acetone delivered the highest protein recovery for top-down proteomic analysis; however, TCA precipitation resulted in good protein separation and the highest number of protein spots in 2-DE. Moreover, TCA precipitation also gave high efficiency of protein recovery if prior sonication procedure was performed.
In Escherichia coli, cyclic AMP receptor protein (CRP) is known to regulate the transcription of about 100 genes. The signal to activate CRP is the binding of cyclic AMP. It has been suggested that binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP-binding domain to the C-terminal domain of the protein, which is responsible for interaction with specific sequences of DNA. The signal transduction plays a crucial role in the activation of the protein. The most sophisticated spectroscopic techniques, other techniques frequently used in structural biochemistry, and site-directed mutagenesis have been used to investigate the details of cAMP-mediated allosteric control over CRP conformation and activity as a transcription factor. The aim of this review is to summarize recent works and developments pertaining to cAMP-dependent CRP signal transduction in E. coli.
An investigation of the interactions between bio-polymeric nanoparticles (NPs) and the RAW 264.7 mouse murine macrophage cell line has been presented. The cell viability, immunological response, and endocytosis efficiency of NPs were studied. Biopolymeric NPs were synthesized from a nanoemulsion using the phase inversion composition (PIC) technique. The two types of biopolymeric NPs that were obtained consisted of a biocompatible polymer, polycaprolactone (PCL), either with or without its copolymer with poly(ethylene glycol) (PCL-b-PEG). Both types of synthesized PCL NPs passed the first in vitro quality assessments as potential drug nanocarriers. Non-pegylated PCL NPs were internalized more effectively and the clathrin-mediated pathway was involved in that process. The investigated NPs did not affect the viability of the cells and did not elicit an immune response in the RAW 264.7 cells (neither a significant increase in the expression of genes encoding pro-inflammatory cytokines nor NO (nitric oxide) production were observed). It may be concluded that the synthesized NPs are promising candidates as nanocarriers of therapeutic compounds.
-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1; NOS, nitric oxide synthase; NSE, neuron-specific enolase; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TFA, trifluoroacetic acid; TNT, Trisbuffered saline with 0.1% Tween-20. AbstractThe present study uses a proteomic approach to examine possible alterations of protein expression in the hippocampus of rats that are subjected to chronic mild stress (CMS). These rats serve as an animal model that was developed to mimic anhedonia, which is one of the core symptoms of depression. As antidepressant treatment is effective after a few weeks of administration, we also aimed to identify changes that were linked to chronic (once daily for 4 weeks) and 'pulse' (once a week) administration of imipramine. Fifteen differential proteins were identified with 2D electrophoresis followed by mass spectrometry. Although both methods of imipramine administration restored normal sucrose consumption in rats that were subjected to CMS, the molecular mechanisms of these two therapies were different. CMS-induced changes in the levels of dynactin 2, Ash 2, non-neuronal SNAP25 and alphaenolase were reversed by chronic imipramine, but 'pulse' treatment was not that effective.
The cAMP receptor protein, allosterically activated by cAMP, regulates the expression of more than 100 genes in Escherichia coli. CRP is a homodimer of two-domain subunits. It has been suggested that binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP binding domain to the C-terminal domain of the protein responsible for interaction with specific sequences of DNA. In this study, the stopped-flow and time-resolved fluorescence lifetime measurements were used to observe the kinetics of the distance changes between the N-terminal and C-terminal domain of CRP induced by binding of cAMP to high-affinity binding sites. In these measurements, we used the constructed CRP heterodimer, which possesses a single Trp85 residue localized at the N-terminal domain of one CRP subunit, and fluorescently labeled by 1,5-I-AEDANS Cys178 localized at the C-terminal domain of the same subunit or at the opposite one. The Förster resonance energy transfer method has been used to study the distance changes, induced by binding of cAMP, between Trp85 (fluorescence donor) and Cys178-AEDANS (fluorescence acceptor) in the CRP structure. The obtained results show that the allosteric transitions of CRP at micromolar cAMP concentrations follow the sequential binding model, in which binding of cAMP to high-affinity sites causes a 4 A movement of the C-terminal domain toward N-terminal domains of the protein, with kinetics faster than 2 ms, and CRP adopts the "closed" conformation. This fast process is followed by the slower reorientation of both CRP subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.