Estradiol-17β (E2) is a key hormone regulating reproductive functions in females. In pigs, E2, as the main conceptus signal, initiates processes resulting in prolonged corpus luteum function, embryo development, and implantation. During early pregnancy the endometrium undergoes morphological and physiological transitions that are tightly related to transcriptome changes. Recently, however, the importance of E2 as a primary conceptus signal in the pig has been questionable. Thus, the aim of the present study was to determine the effects of E2 on the porcine endometrial transcriptome in vivo and to compare these effects with transcriptome profiles on day 12 of pregnancy. Microarray analysis revealed differentially expressed genes (DEGs) in response to E2 with overrepresented functional terms related to secretive functions, extracellular vesicles, cell adhesion, proliferation and differentiation, tissue rearrangements, immune response, lipid metabolism, and many others. Numerous common DEGs and processes for the endometrium on day 12 of pregnancy and E2-treated endometrium were identified. In summary, the present study is the first evidence for the effect of E2 on transcriptome profiles in porcine endometrium in vivo in the period corresponding to the maternal recognition of pregnancy. The presented results provide a valuable resource for further targeted studies considering genes and pathways regulated by conceptus-derived estrogens and their role in pregnancy establishment.During early pregnancy in the pig, porcine conceptuses (embryos with associated membranes) secrete E2, which is regarded as the pregnancy recognition signal required for prolonged progesterone synthesis and secretion by corpora lutea (CLs). Porcine conceptuses secrete estrogens in a biphasic manner-the first increase of conceptus-derived estrogens occurs on days 11-13 after fertilization and the second is between days 15 and 25-30 after fertilization (reviewed in [2]). However, the levels of conceptus-derived estrogens in the uterine lumen may also vary depending on the number of conceptuses [1]. The period of elevated E2 synthesis and secretion by porcine conceptuses between days 11-13 of pregnancy is a process defined as the maternal recognition of pregnancy [5]. This is the critical period for establishment and development of pregnancy as the highest mortality rate of embryos in animals including pigs is observed during the peri-implantation period [6]. Embryonic estrogen synthesis and secretion not only prolongs the CL lifespan but also enhances P4-induced endometrial receptivity for implantation. Following the decrease of the progesterone receptor expression in the endometrial luminal and glandular epithelia, the expression of the estrogen receptor (ESR1) is up-regulated in these structures, which in turn is important for the cell-specific responses to conceptus estrogens released on day 12 of pregnancy [7]. Estrogen is involved in stimulation of uterine secretory activity [8], increased blood flow [9], endometrial edema [10], and the regul...
Pregnancy establishment in mammals, including pigs, requires proper communication between embryos and the maternal reproductive tract. Prokineticin 1 (PROK1) has been described as a secretory protein with pleiotropic functions and as a novel tissue-specific angiogenic factor. However, despite the studies performed mainly on human cell lines and in mice, the function of PROK1 in the endometrium during early pregnancy is still not fully elucidated. We hypothesized that PROK1 contributes to pregnancy establishment in pigs. The present study is the first to report that the expression of PROK1 and its receptor (PROKR1) is elevated in the porcine endometrium during the implantation and early placentation period. PROK1 protein was detected mainly in luminal epithelial cells, glandular epithelial cells, and blood vessels in the endometrium. Using the porcine in vivo model of unilateral pregnancy, we revealed that conceptuses induced the endometrial expression of PROK1 and PROKR1. Moreover, the embryonic signal, estradiol-17β, as well as progesterone, stimulated the endometrial expression of PROK1 and PROKR1. We also evidenced that PROK1–PROKR1 signaling supports endometrial angiogenesis in pigs. The PROK1-stimulated proliferation of primary porcine endometrial endothelial (PEE) cells involved PI3K/AKT/mTOR, MAPK, cAMP, and NFKB signaling pathways. Furthermore, PROK1 via PROKR1 promoted the formation of capillary-like structures by PEE cells. PROK1 also stimulated VEGFA and PGF2α secretion, which in turn may indirectly support angiogenic changes within endometrial tissue. In summary, our study suggests that PROK1 acts as an embryonic signal mediator that regulates endometrial angiogenesis and secretory function during the implantation and early placentation period in pigs.
Successful pregnancy establishment in mammals depends on numerous interactions between embryos and the maternal organism. Estradiol-17β (E2) is the primary embryonic signal in the pig, and its importance has been questioned recently. However, E2 is not the only molecule of embryonic origin. In pigs, prostaglandin E2 (PGE2) is abundantly synthesized and secreted by conceptuses and endometrium. The present study aimed to determine the role of PGE2 and its simultaneous action with E2 in changes in porcine endometrial transcriptome during pregnancy establishment. The effects of PGE2 and PGE2 acting with E2 were studied using an in vivo model of intrauterine hormone infusions, and were compared to the effects of E2 alone and conceptuses’ presence on day 12 of pregnancy. The endometrial transcriptome was profiled using gene expression microarrays followed by statistical analyses. Downstream analyses were performed using bioinformatics tools. Differential expression of selected genes was verified by quantitative PCR. Microarray analysis revealed 2413 differentially expressed genes (DEGs) in the endometrium treated simultaneously with PGE2 and E2 (P < 0.01). No significant effect of PGE2 administered alone on endometrial transcriptome was detected. Gene ontology annotations enriched for DEGs were related to multiple processes such as: focal adhesion, vascularization, cell migration and proliferation, glucose metabolism, tissue remodeling, and activation of immune response. Simultaneous administration of E2 and PGE2 induced more changes within endometrial transcriptome characteristic to pregnancy than infusion of E2 alone. The present findings suggest that synergistic action of estradiol-17β and PGE2 resembles the effects of pregnancy on endometrial transcriptome better than E2 alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.