The secondary sterilisation by irradiation reduces the risk of infectious disease transmission with tissue allografts. Achieving sterility of bone tissue grafts compromises its biomechanical properties. There are several factors, including dose and temperature of irradiation, as well as processing conditions, that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect of gamma irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as gamma irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis it was found that defatting of bone rings had no significant effect on any mechanical parameter studied, whereas irradiation with both doses decreased significantly the ultimate strain and its derivative toughness. The elastic limit and resilience were significantly increased by irradiation with the dose 25 kGy, but not 35 kGy, when the time of irradiation was longer. Additionally, irradiation at ambient temperature decreased maximum load, elastic limit, resilience, and ultimate stress. As strain in the elastic region was not affected, decreased elastic limit resulted in lower resilience. The opposite phenomenon was observed in the plastic region, where in spite of the lower ultimate stress, the toughness was increased due to the increase in the ultimate strain. The results of our study suggest that there may be an association between mechanical properties of bone tissue grafts and the damage process of collagen structure during gamma irradiation. This collagen damage in cortical bone allografts containing water does not depends on the temperature of irradiation or defatting during processing if dose of gamma irradiation does not exceed 35 kGy.
Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress–strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy absorption capacity of irradiated bone rings apparently resulted from changes generated by irradiation within the plastic strain region.
Ionizing radiation has been found to induce stable defects in the crystalline lattice of bone mineral hydroxyapatite, defined as CO(2) (-) radical ions possessing spins. The purpose of our study was to evaluate CO(2) (-) radical ions induced in non-defatted or defatted human compact bone by gamma radiation (G) and accelerated electron beam (EB), applied with two doses at different temperatures. Moreover, the potential effect of free radical ion formation on mechanical parameters of compact bone, tested under compression in the previous studies, was evaluated. Bone rings from femoral shafts of six male donors (age 51 ± 3 years) were collected and assigned to sixteen experimental groups according to different processing methods (non-defatted or defatted), G and EB irradiation dose (25 or 35 kGy), and irradiation temperature [ambient temperature (AT) or dry ice (DI)]. Untreated group served as control. Following grinding under LN2 and lyophilization, CO(2) (-) radical ions in bone powder were measured by electron paramagnetic resonance spectrometry. We have found that irradiation of bone with G and EB induces formation of enormous amounts of CO(2) (-) radical ions, absent from native tissue. Free radical ion formation was dose-dependent when irradiation was performed at AT, and significantly lower in EB as compared to G-irradiated groups. In contrast, no marked effect of dose was observed when deep-frozen (DI) bone samples were irradiated with G or EB, and free radical ion numbers seemed to be slightly higher in EB-irradiated groups. Irradiation at AT induced much higher quantities of CO(2) (-) radical ions then on DI. That effect was more pronounced in G-irradiated bone specimens, probably due to longer exposure time. Similarly, bone defatting protective effect on free radical ion formation was found only in groups irradiated for several hours with gamma radiation at ambient temperature. Ambient irradiation temperature together with exposure time seem to be key parameters promoting CO(2) (-) radical ion formation in bone mineral and may mask the opposite effect of defatting and the possible effect of irradiation type. Significant weak negative correlations between CO(2) (-) radical ion number and some mechanical properties of compact bone rings (Young's modulus and ultimate stress) were found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.