IntroductionThe aim of this study was the assessment of neuron‐specific enolase (NSE) and S‐100 concentration in serum and cerebrospinal fluid (CSF) in patients with different clinical forms of tick‐borne encephalitis (TBE).Material and MethodsThe serum and CFS concentrations of S100B and NSE of 43 patients with TBE were measured with ELISA method using commercial kits: NSE and S100B Elisa Kit (DRG, Germany). Subjects were divided into: Group I—patients with meningoencephalitis (n = 17) and Group II—patients with meningitis (n = 26). None of the patients reported any neurodegenerative disorder that could affect the results of the study. The control group (CG) consisted of 13 patients. These patients were admitted to the hospital because of headache, and the CSF examination excluded inflammatory process. Samples were collected on admission (sample 1) and after treatment (sample 2).ResultsNeuron‐specific enolase concentration in CSF was higher in group I than in group II (p = 0.0002) and controls (p = 0.04). NSE concentration was higher in the second serum and CSF sample in both groups. S100B concentration did not differ between TBE patients and controls. NSE concentration in serum after 14 days was higher in the sequelae group (34.3 ± 9.7 vs. 16.7 ± 15, p = 0.04). Also, NSE serum sample 2/serum sample 1 ratio was significantly higher in the sequelae group (3.57 ± 0.92 vs. 1.53 ± 1.99, p = 0.04). Receiver Operating Characteristic curve analysis indicated that NSE concentration in serum II differentiates sequelae group from other meningoencephalitis patients (p = 0.0001). S100B serum sample 2/CSF sample 2 ratio was lower in the sequelae group (0.05 ± 0.1 vs. 0.37 ± 0.28, p = 0.02).Conclusions(a) Neurodegeneration process is present in TBE encephalitis. (b) NSE concentration correlates with inflammatory parameters in CSF in TBE. (c) Neurodegeneration is present even after clinical recovery of TBE. (d) NSE could be used in the prediction of TBE course. (e) S‐100 did not differ between TBE patients and controls.
Tick-borne encephalitis is a neuroinfection widely distributed in the Euro–Asia region. Primarily, the virus is transmitted by the bite of infected ticks. From 2000–2019, the total number of confirmed cases in Europe reported to the European Centre for Disease Prevention and Control was 51,519. The number of cases decreased in 2014 and 2015; however, since 2015, a growing number of cases have been observed, with the involvement of countries in which TBE has not been previously reported. The determinant factors for the spread of TBE are host population size, weather conditions, movement of hosts, and local regulations on the socioeconomic dynamics of the local and travelling people around the foci areas. The mean incidence rate of tick-borne encephalitis from 2000–2019 in Europe was 3.27, while the age-adjusted mean incidence rate was 2.19 per 100,000 population size. This review used several articles and data sources from the European Centre for Diseases Prevention and Control.
The COVID-19 pandemic made more people aware of the danger of viruses and bacteria, which is why disinfection began to be used more and more often. Epidemiological safety must be ensured not only in gathering places, but also in home and work environments. It is especially challenging in public transportation, which is a perfect environment for the spread of infectious disease. Therefore, the aim of the study was the identification of bacteria in crowded places and the evaluation of the effect of fumigation with peracetic acid (PAA) in public transportation. Inactivation of microorganisms in buses and long-distance coaches was carried out using an automatic commercial fogging device filled with a solution of peracetic acid stabilized with acetic acid (AA) and hydrogen peroxide (H2O2). Before and after disinfection, samples were taken for microbiological tests. The most prevalent bacteria were Micrococcus luteus and Bacillus licheniformis.Staphylococcus epidermidis was only present in buses, whereas Staphylococcus hominis and Exiguobacterium acetylicum were only present in coaches. Statistical analysis showed a significant reduction in the number of microorganisms in samples taken from different surfaces after disinfection in vehicles. The overall effectiveness of disinfection was 81.7% in buses and 66.5% in coaches. Dry fog fumigation with peracetic acid is an effective method of disinfecting public transport vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.