; for the BETonMACE Investigators and Committees IMPORTANCE Bromodomain and extraterminal proteins are epigenetic regulators of gene transcription. Apabetalone is a selective bromodomain and extraterminal protein inhibitor targeting bromodomain 2 and is hypothesized to have potentially favorable effects on pathways related to atherothrombosis. Pooled phase 2 data suggest favorable effects on clinical outcomes. OBJECTIVE To test whether apabetalone significantly reduces major adverse cardiovascular events. DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled trial, conducted at 190 sites in 13 countries. Patients with an acute coronary syndrome in the preceding 7 to 90 days, type 2 diabetes, and low high-density lipoprotein cholesterol levels were eligible for enrollment, which started November 11, 2015, and ended July 4, 2018, with end of follow-up on July 3, 2019. INTERVENTIONS Patients were randomized (1:1) to receive apabetalone, 100 mg orally twice daily (n = 1215), or matching placebo (n = 1210) in addition to standard care. MAIN OUTCOMES AND MEASURES The primary outcome was a composite of time to the first occurrence of cardiovascular death, nonfatal myocardial infarction, or stroke. RESULTS Among 2425 patients who were randomized (mean age, 62 years; 618 women [25.6%]), 2320 (95.7%) had full ascertainment of the primary outcome. During a median follow-up of 26.5 months, 274 primary end points occurred: 125 (10.3%) in apabetalonetreated patients and 149 (12.4%) in placebo-treated patients (hazard ratio, 0.82 [95% CI, 0.65-1.04]; P = .11). More patients allocated to apabetalone than placebo discontinued study drug (114 [9.4%] vs 69 [5.7%]) for reasons including elevations of liver enzyme levels (35 [2.9%] vs 11 [0.9%]). CONCLUSIONS AND RELEVANCE Among patients with recent acute coronary syndrome, type 2 diabetes, and low high-density lipoprotein cholesterol levels, the selective bromodomain and extraterminal protein inhibitor apabetalone added to standard therapy did not significantly reduce the risk of major adverse cardiovascular events.
Background Apabetalone (RVX-208) is a bromodomain and extraterminal protein inhibitor (BETi) that in phase II trials reduced the relative risk (RR) of major adverse cardiac events (MACE) in patients with cardiovascular disease (CVD) by 44% and in diabetic CVD patients by 57% on top of statins. A phase III trial, BETonMACE, is currently assessing apabetalone’s ability to reduce MACE in statin-treated post-acute coronary syndrome type 2 diabetic CVD patients with low high-density lipoprotein C. The leading cause of MACE is atherosclerosis, driven by dysfunctional lipid metabolism and chronic vascular inflammation (VI). In vitro studies have implicated the BET protein BRD4 as an epigenetic driver of inflammation and atherogenesis, suggesting that BETi may be clinically effective in combating VI. Here, we assessed apabetalone’s ability to regulate inflammation-driven gene expression and cell adhesion in vitro and investigated the mechanism by which apabetalone suppresses expression. The clinical impact of apabetalone on mediators of VI was assessed with proteomic analysis of phase II CVD patient plasma. Results In vitro, apabetalone prevented inflammatory (TNFα, LPS, or IL-1β) induction of key factors that drive endothelial activation, monocyte recruitment, adhesion, and plaque destabilization. BRD4 abundance on inflammatory and adhesion gene promoters and enhancers was reduced by apabetalone. BRD2-4 degradation by MZ-1 also prevented TNFα-induced transcription of monocyte and endothelial cell adhesion molecules and inflammatory mediators, confirming BET-dependent regulation. Transcriptional regulation by apabetalone translated into a reduction in monocyte adhesion to an endothelial monolayer. In a phase II trial, apabetalone treatment reduced the abundance of multiple VI mediators in the plasma of CVD patients (SOMAscan® 1.3 k). These proteins correlate with CVD risk and include adhesion molecules, cytokines, and metalloproteinases. Ingenuity® Pathway Analysis (IPA®) predicted that apabetalone inhibits pro-atherogenic regulators and pathways and prevents disease states arising from leukocyte recruitment. Conclusions Apabetalone suppressed gene expression of VI mediators in monocytes and endothelial cells by inhibiting BET-dependent transcription induced by multiple inflammatory stimuli. In CVD patients, apabetalone treatment reduced circulating levels of VI mediators, an outcome conducive with atherosclerotic plaque stabilization and MACE reduction. Inhibition of inflammatory and adhesion molecule gene expression by apabetalone is predicted to contribute to MACE reduction in the phase III BETonMACE trial. Electronic supplementary material The online version of this article (10.1186/s13148-019-0696-z) contains supplementary material, which is available to authorized users.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
High density lipoproteins (HDL), through activity of the main protein component apolipoprotein A-I (ApoA-I), can reduce the risk of cardiovascular disease (CVD) by removing excess cholesterol from atherosclerotic plaque. In this study, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor RVX-208 increases ApoA-I gene transcription and protein production in human and primate primary hepatocytes. Accordingly, RVX-208 also significantly increases levels of ApoA-I, HDL-associated cholesterol, and HDL particle number in patients who received the compound in recently completed phase 2b trials SUSTAIN and ASSURE. Moreover, a post-hoc analysis showed lower instances of major adverse cardiac events in patients receiving RVX-208. To understand the effects of RVX-208 on biological processes underlying cardiovascular risk, we performed microarray analyses of human primary hepatocytes and whole blood treated ex vivo. Overall, data showed that RVX-208 raises ApoA-I/HDL and represses pro-inflammatory, pro-atherosclerotic and pro-thrombotic pathways that can contribute to CVD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.