Under fertilization levels specific to intensive farming, the impact of compensation of soil nutritional value by arbuscular mycorrhiza (AM) might be limited. Therefore, the question arises whether modern crop varieties, selected for high NPK assimilation rate, are able to gain symbiotic benefits under other challenging field conditions, such as drought. Accordingly, in this study we aimed to evaluate the contribution of Rhizophagus irregularis to the drought response of a stay-green corn hybrid in pot cultures equally fertilized until silking, compared to non-mycorrhizal (NM) counterparts. The highest tested fertilization regime not detrimental to the long-term vitality of intraradical hyphae reached the levels recommended for field cultivation of silage corn, except phosphorus application restricted to 60%. Under normal watering, mycorrhiza increased leaf nitrogen and phosphorus acquisition but only in cultures supplied with low NPK levels. At high fertilization levels, only the older leaves retained AM dependency, whereas for other leaf positions the AM-NM differences were leveled out. The similar size and nutritional status of highly fertilized AM and NM cultures, used in this study, eliminated fungal benefits before and during the 2-week drought progression. Nevertheless, mycorrhizal contribution became evident at the time of renewed watering, when AM plants showed much faster reversal of drought-induced leaf senescence symptoms: impaired photosynthesis and nitrogen management. Our results suggest that mycorrhiza can alter drought-induced senescence even in stay-green mutants. Moreover, this effect was apparently not mediated by AM-improved growth but triggered by activation of fungal transport at the time of recovery. Interestingly, the fungal protective potential was shown to be preserved at the expense of lowering AM vesicle number. It can be interpreted as engagement of hyphal nutritional resources targeted to maintain the symbiotic relationship despite the reduced vitality of the host. Finally, we compared the productivity of AM and NM cultures subjected to short-term drought at silking time and further fertilized with moderate or high NPK doses until the grain-filling stage. The yield and nutritive value of green forage showed that alleviation of drought-induced senescence by AM was not sufficient to have a significant positive effect on the final productivity compared to NM plants.
The research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition. Isolated embryo axes were fed with 60mM sucrose or were sugar-starved. The effect of 35mM asparagine (a central amino acid in the metabolism of germinating lupin seeds) and 35mM nitrate (used as an inorganic kind of nitrogen) on growth, storage lipid breakdown and autophagy was investigated. The sugar-starved isolated embryo axes contained more total lipid than axes fed with sucrose, and the content of this storage compound was even higher in sugar-starved isolated embryo axes fed with asparagine. Ultrastructural observations showed that asparagine significantly slowed down decomposition of autophagic bodies, and this allowed detailed analysis of their content. We found peroxisomes inside autophagic bodies in cells of sugar-starved Andean lupin embryo axes fed with asparagine, which led us to conclude that peroxisomes may be degraded during autophagy in sugar-starved isolated lupin embryo axes. One reason for the slower degradation of autophagic bodies was the markedly lower lipolytic activity in axes fed with asparagine.
20EGY2 is a zinc -containing, intramembrane protease, located in the thylakoid membrane. It 21 is consider to be involved in the regulated intramembrane proteolysis -a mechanism leading
Protective mechanisms against cold stress are well studied in terrestrial and polar insects; however, little is known about these mechanisms in tropical insects. In our study, we tested if a tropical cockroach Gromphadorhina coquereliana, possesses any protective mechanisms against cold stress. Based on the results of earlier studies, we examined how short-term (3 h) cold (4°C) influences biochemical parameters, mitochondrial respiration activity, and the level of HSPs and aquaporins expression in the fat body and leg muscles of G. coquereliana. Following cold exposure, we found that the level of carbohydrates, lipids and proteins did not change significantly. Nevertheless, we observed significant changes in mitochondrial respiration activity. The oxygen consumption of resting (state 4) and phosphorylating (state 3) mitochondria was altered following cold exposure. The increase in respiratory rate in state 4 respiration was observed in both tissues. In state 3, oxygen consumption by mitochondria in fat body was significantly lower compared to control insects, whereas there were no changes observed for mitochondria in muscle tissue. Moreover, there were cold-induced changes in UCP protein activity, but the changes in activity differed in fat body and in muscles. Additionally, we detected changes in the level of HSP70 and aquaporins expression. Insects treated with cold had significantly higher levels of HSP70 in fat body and muscles. On the other hand, there were lower levels of aquaporins in both tissues following exposure to cold. These results suggest that fat body play an important role in protecting tropical insects from cold stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.