Once released into the aquatic environment, nanoparticles (NPs) are expected to interact (e.g. dissolve, agglomerate/aggregate, settle), with important consequences for NP fate and toxicity. A clear understanding of how internal and environmental factors influence the NP toxicity and fate in the environment is still in its infancy. In this study, a quantitative structure-property relationship (QSPR) approach was employed to systematically explore factors that affect surface charge (zeta potential) under environmentally realistic conditions. The nano-QSPR model developed with multiple linear regression (MLR) was characterized by high robustness [Formula: see text] and external predictivity [Formula: see text] The results clearly showed that zeta potential values varied markedly as functions of the ionic radius of the metal atom in the metal oxides, confirming that agglomeration and the extent of release of free MexOy largely depend on their intrinsic properties. A developed nano-QSPR model was successfully applied to predict zeta potential in an ionized solution of NPs for which experimentally determined values of response have been unavailable. Hence, the application of our model is possible when the values of zeta potential in the ionized solution for metal oxide nanoparticles are undetermined, without the necessity of performing more time consuming and expensive experiments. We believe that our studies will be helpful in predicting the conditions under which MexOy is likely to become problematic for the environment and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.