Currently there are no effective antifibrotic therapies for liver cirrhosis, a major killer worldwide. To obtain a cellular resolution of directly-relevant pathogenesis and to inform therapeutic design, we profile the transcriptomes of over 100,000 human single cells, yielding molecular definitions for non-parenchymal cell types present in healthy and cirrhotic human liver. We uncover a novel scar-associated TREM2 + CD9 + macrophage subpopulation, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define novel ACKR1 + and PLVAP + endothelial cells which expand in cirrhosis, are topographically scar-restricted and enhance leucocyte transmigration. Multi-lineage ligand-receptor modelling of interactions between the novel scar-associated macrophages, endothelial cells and PDGFRα + collagenproducing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides the conceptual framework required to discover rational therapeutic targets in liver cirrhosis. Recent estimates suggest that 844 million people worldwide have chronic liver disease, with two million deaths per year and a rising incidence 1. Iterative liver injury secondary to any cause leads to progressive fibrosis ultimately resulting in liver cirrhosis. Importantly, the degree of liver fibrosis predicts adverse patient outcomes 2. Hence, effective antifibrotic therapies for patients with chronic liver disease are urgently required 3,4. Liver fibrosis involves a complex interplay between multiple non-parenchymal cell (NPC) lineages including immune, endothelial and mesenchymal cells spatially located within areas of scarring, termed the fibrotic niche. Despite progress in our understanding of liver fibrogenesis accrued using rodent models, there remains a significant 'translational gap' Ramachandran et al.
On the 24 th November 2021 the sequence of a new SARS CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.
medRxiv preprint 5 Structured abstractObjective -To characterize the clinical features of patients with severe COVID-19 in the UK.Design -Prospective observational cohort study with rapid data gathering and near realtime analysis, using a pre-approved questionnaire adopted by the WHO. Setting -166 UK hospitals between 6 th February and 18 th April 2020. Participants-16,749 people with COVID-19.Interventions -No interventions were performed, but with consent samples were taken for research purposes. Many participants were co-enrolled in other interventional studies and clinical trials. Results -The median age was 72 years [IQR 57, 82; range 0, 104], the median duration of symptoms before admission was 4 days [IQR 1,8] and the median duration of hospital stay was 7 days [IQR 4,12]. The commonest comorbidities were chronic cardiac disease (29%), uncomplicated diabetes (19%), non-asthmatic chronic pulmonary disease (19%) and asthma (14%); 47% had no documented reported comorbidity. Increased age and comorbidities including obesity were associated with a higher probability of mortality. Distinct clusters of symptoms were found: 1. respiratory (cough, sputum, sore throat, runny nose, ear pain, wheeze, and chest pain); 2. systemic (myalgia, joint pain and fatigue); 3. enteric (abdominal pain, vomiting and diarrhoea). Overall, 49% of patients were discharged alive, 33% have died and 17% continued to receive care at date of reporting. 17% required admission to High Dependency or Intensive Care Units; of these, 31% were discharged alive, 45% died and 24% continued to receive care at the reporting date. Of those receiving mechanical ventilation, 20% were discharged alive, 53% died and 27% remained in hospital.Conclusions -We present the largest detailed description of COVID-19 in Europe, demonstrating the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks.
Background The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. MethodsThe Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A posthoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). Findings We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5•9 months (IQR 4•9-6•5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40-59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity.Interpretation We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.