SummaryWe present a region-based segmentation method in which seeds representing both object and background pixels are created by combining morphological filtering of both the original image and the gradient magnitude of the image. The seeds are then used as starting points for watershed segmentation of the gradient magnitude image. The fully automatic seeding is done in a generous fashion, so that at least one seed will be set in each foreground object. If more than one seed is placed in a single object, the watershed segmentation will lead to an initial over-segmentation, i.e. a boundary is created where there is no strong edge. Thus, the result of the initial segmentation is further refined by merging based on the gradient magnitude along the boundary separating neighbouring objects. This step also makes it easy to remove objects with poor contrast. As a final step, clusters of nuclei are separated, based on the shape of the cluster. The number of input parameters to the full segmentation procedure is only five. These parameters can be set manually using a test image and thereafter be used on a large number of images created under similar imaging conditions. This automated system was verified by comparison with manual counts from the same image fields. About 90% correct segmentation was achieved for two-as well as three-dimensional images.
Cervical cancer is one of the most deadly and common forms of cancer among women if no action is taken to prevent it, yet it is preventable through a simple screening test, the so-called PAP-smear. This is the most effective cancer prevention measure developed so far. But the visual examination of the smears is time consuming and expensive and there have been numerous attempts at automating the analysis ever since the test was introduced more than 60 years ago. The first commercial systems for automated analysis of the cell samples appeared around the turn of the millennium but they have had limited impact on the screening costs. In this paper we examine the key issues that need to be addressed when an automated analysis system is developed and discuss how these challenges have been met over the years. The lessons learned may be useful in the efforts to create a cost-effective screening system that could make affordable screening for cervical cancer available for all women globally, thus preventing most of the quarter million annual unnecessary deaths still caused by this disease.
Feature extraction is a crucial step in most cytometry studies. In this paper a systematic approach to feature extraction is presented. The feature sets that have been developed and used for quantitative cytology at the Laboratory for Biomedical Image Analysis of the GSF as well as at the Center for Image Analysis in Uppsala over the last 25 years are described and illustrated. The feature sets described are divided into morphometric, densitometric, textural and structural features. The latter group is used to describe the eu‐ and hetero‐chromatin in a way complementing the textural methods. The main goal of the paper is to bring attention to the need of a common and well defined description of features used in cyto‐ and histometrical studies. The application of the sets of features is shown in an overview of projects from different fields. Finally some rules of thumb for the design of studies in this field are proposed. Colour figures can be viewed on http://www.esacp.org/acp/2003/25‐1/rodenacker.htm.
Abstract. Automatic cell segmentation has various applications in cytometry, and while the nucleus is often very distinct and easy to identify, the cytoplasm provides a lot more challenge. A new combination of image analysis algorithms for segmentation of cells imaged by fluorescence microscopy is presented. The algorithm consists of an image pre-processing step, a general segmentation and merging step followed by a segmentation quality measurement. The quality measurement consists of a statistical analysis of a number of shape descriptive features. Objects that have features that differ to that of correctly segmented single cells can be further processed by a splitting step. By statistical analysis we therefore get a feedback system for separation of clustered cells. After the segmentation is completed, the quality of the final segmentation is evaluated. By training the algorithm on a representative set of training images, the algorithm is made fully automatic for subsequent images created under similar conditions. Automatic cytoplasm segmentation was tested on CHO-cells stained with calcein. The fully automatic method showed between 89% and 97% correct segmentation as compared to manual segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.