Multitargeting compounds comprising activity on more than a single biological target have gained remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, inflammation, or the metabolic syndrome. Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects and significantly contribute to the high therapeutic success of indispensable drugs such as aspirin. While their identification has long been the result of serendipity, medicinal chemistry now tends to design polypharmacology. Modern in vitro pharmacological methods and chemical probes allow a systematic search for rational target combinations and recent innovations in computational technologies, crystallography, or fragment-based design equip multitarget compound development with valuable tools. In this Perspective, we analyze the relevance of multiple ligands in drug discovery and the versatile toolbox to design polypharmacology. We conclude that despite some characteristic challenges remaining unresolved, designed polypharmacology holds enormous potential to secure future therapeutic innovation.
Background: Identification and evaluation of surface binding-pockets and occluded cavities are initial steps in protein structure-based drug design. Characterizing the active site's shape as well as the distribution of surrounding residues plays an important role for a variety of applications such as automated ligand docking or in situ modeling. Comparing the shape similarity of binding site geometries of related proteins provides further insights into the mechanisms of ligand binding.
Spirocyclic
scaffolds are incorporated in various approved drugs
and drug candidates. The increasing interest in less planar bioactive
compounds has given rise to the development of synthetic methodologies
for the preparation of spirocyclic scaffolds. In this Perspective,
we summarize the diverse synthetic routes to obtain spirocyclic systems.
The impact of spirocycles on potency and selectivity, including the
aspect of stereochemistry, is discussed. Furthermore, we examine the
changes in physicochemical properties as well as in in vitro and in
vivo ADME using selected studies that compare spirocyclic compounds
to their nonspirocyclic counterparts. In conclusion, the value of
spirocyclic scaffolds in medicinal chemistry is discussed.
We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties.
antibiotic resistance • fluorescence-based assay • metallo-β-lactamase (MBL) • NDM-1 • thiols.ABSTRACT: Resistance to β-lactam antibiotics can be mediated by metallo-β-lactamase enzymes (MBLs). An MBL inhibitor could restore the effectiveness of β-lactams. We report on the evaluation of approved thiol-containing drugs as inhibitors of NDM-1, VIM-1 and IMP-7. Drugs were assessed by a novel assay using a purchasable fluorescent substrate and thermal shift. Best compounds were tested in antimicrobial susceptibility assay. Using these orthogonal screening methods we identified drugs which restored the activity of Imipenem.INTRODUCTION:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.