Estimating the expectations of functionals applied to sums of random variables (RVs) is a well-known problem encountered in many challenging applications. Generally, closed-form expressions of these quantities are out of reach. A naive Monte Carlo simulation is an alternative approach. However, this method requires numerous samples for rare event problems. Therefore, it is paramount to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), known for its efficiency in requiring fewer computations to achieve the same accuracy requirements. We propose a state-dependent IS scheme based on a stochastic optimal control formulation, where the control is dependent on state and time. We aim to calculate rare event quantities that could be written as an expectation of a functional of the sums of independent RVs. The proposed algorithm is generic and can be applied without restrictions on the univariate distributions of RVs or the functional applied to the sum. We apply this approach to the log-normal distribution to compute the left tail and cumulative distribution of the ratio of independent RVs. For each case, we numerically demonstrate that the proposed state-dependent IS algorithm compares favorably to most well-known estimators dealing with similar problems.
When assessing the performance of wireless communication systems operating over fading channels, one often encounters the problem of computing expectations of some functional of sums of independent random variables (RVs). The outage probability (OP) at the output of Equal Gain Combining (EGC) and Maximum Ratio Combining (MRC) receivers is among the most important performance metrics that falls within this framework. In general, closed form expressions of expectations of functionals applied to sums of RVs are out of reach. A naive Monte Carlo (MC) simulation is of course an alternative approach. However, this method requires a large number of samples for rare event problems (small OP values for instance). Therefore, it is of paramount importance to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), being known for its efficiency in requiring less computations for achieving the same accuracy requirement. In this line, we propose a state-dependent IS scheme based on a stochastic optimal control (SOC) formulation to calculate rare events quantities that could be written in a form of an expectation of some functional of sums of independent RVs. Our proposed algorithm is generic and can be applicable without any restriction on the univariate distributions of the different fading envelops/gains or on the functional that is applied to the sum. We apply our approach to the Log-Normal distribution to compute the OP at the output of diversity receivers with and without co-channel interference. For each case, we show numerically that the proposed state-dependent IS algorithm compares favorably to most of the well-known estimators dealing with similar problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.