Cost estimation is the most important preliminary process in any construction project. Therefore, construction cost estimation has the lion’s share of the research effort in construction management. In this paper, we have analysed and studied proposals for construction cost estimation for the last 10 years. To implement this survey, we have proposed and applied a methodology that consists of two parts. The first part concerns data collection, for which we have chosen special journals as sources for the surveyed proposals. The second part concerns the analysis of the proposals. To analyse each proposal, the following four questions have been set. Which intelligent technique is used? How have data been collected? How are the results validated? And which construction cost estimation factors have been used? From the results of this survey, two main contributions have been produced. The first contribution is the defining of the research gap in this area, which has not been fully covered by previous proposals of construction cost estimation. The second contribution of this survey is the proposal and highlighting of future directions for forthcoming proposals, aimed ultimately at finding the optimal construction cost estimation. Moreover, we consider the second part of our methodology as one of our contributions in this paper. This methodology has been proposed as a standard benchmark for construction cost estimation proposals.
The GSMaP_MVK+ (Global Satellite Mapping of Precipitation) dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment in Northeast Jordan for the period of January 2003 to March 2008. The scarcity of the ground rain gauge network alone did not adequately show the detailed structure of the rainfall distribution, independent form interpolation techniques used. This study combines GSMaP_MVK+ and ground rain gauges to produce accurate, high-resolution datasets. Three meteorological stations and six rain gauges were used to adjust and compare GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and ground rain gauges records showed distinct regions where they correlate, as well as areas where GSMaP_MVK+ systematically over- and underestimated ground rain gauge records. A multiple linear regression (MLR) model was used to derive the relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative humidity, and wind speed. The MLR equations were defined for the three meteorological stations. The "best" fit of MLR model for each station was chosen and used to interpolate a multiscale temporal and spatial distribution. Results show that the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates from the monthly MLR model were more reasonable than estimates obtained using daily data. The adjusted GSMaP_MVK+ performed well in capturing the spatial patterns of the rainfall at monthly and annual time scales while daily estimation showed some weakness in light and moderate storms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.