The paper falls into the category of computational methods for inverse scattering techniques for the identification of scatterers. We consider a linear elastodynamic problem and compare two popular methods for identifying a scatterer in the domain. Finite elements are employed with each of the two methods for spatial discretization. One method considered is Full Waveform Inversion using a gradient-based optimization and the adjoint method. In the adjoint procedure for calculating the gradient, we use the variant of discretizing the unknown parameters from the outset while all other variables remain continuous. Gradient optimization is performed in the examples using a quasi-Newton method. The other method compared is the computational Time Reversal technique, which is used in combination with an augmentation procedure to enhance performance. advantages and limitations of the two methods are outlined, and their performance is compared through an example from geophysics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.