We consider the challenge of tracking and estimating the size of a single submerged target in a high reverberant underwater environment using a single active acoustic transceiver. This problem is common for a multitude of applications, ranging from the security and safety needs of tracking submerged vehicles and scuba divers, to environmental research and management implications such as the monitoring of pelagic fauna. Considering that the target can be either slow (e.g., a scuba diver) or fastmoving (e.g., a shark), we avoid continuous signalling, and rely on the emission of wideband pulses whose reflection pattern are evaluated and reshaped in a time-distance matrix. As opposed to common approaches that track targets through template matching or by using tracking filters, we avoid making difficult assumptions about the target's reflection patterns or motion type, and instead perform probabilistic tracking using a constraint Viterbi algorithm, whereby detection is determined based on maximum likelihood criterion. In this process, we use the expectation-maximization (EM) approach to manage stationary reflections through distribution analysis, which otherwise may be misidentified as targets. Based on the tracked path, we then evaluate the target's size. To test our approach, we performed extensive simulations as well as eight sea experiments in different environmental settings to track both a scuba diver and a sandbar shark (Carcharhinus plumbeus). The simulation results show a tracking performance that is close to the Cramér-Rao lower bound, and the experiment results show a good trade-off between detection rate and false alarm rate for a low signal-to-clutter ratio of 5 [dB], and average tracking error of 1.5 [m] and 6.5 [m] in the detections of a scuba diver and sandbar shark, respectively. For reproducibility, we share our sea experiment data.
Streptococcus agalactiae is one of the most important fish pathogenic bacteria as it is responsible for epizootic mortalities in both wild and farmed species. S. agalactiae is also known as a zoonotic agent. In July 2018, a stranded wild sandbar shark (Carcharhinus plumbeus), one of the most common shark species in the Mediterranean Sea, was found moribund on the seashore next to Netanya, Israel, and died a few hours later. A post-mortem examination, histopathology, classical bacteriology and advanced molecular techniques revealed a bacterial infection caused by S. agalactiae, type Ia-ST7. Available sequences publicly accessible databases and phylogenetic analysis suggest that the S. agalactiae isolated in this case is closely related to fish and human isolates. To the best of our knowledge, this is the first description of a fatal streptococcosis in sandbar sharks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.