Accurate indoor localization has long been an objective of the ubiquitous computing research community, and numerous indoor localization solutions based on 802.11, Bluetooth, ultrasound and infrared technologies have been proposed. This paper presents the first accurate GSM indoor localization system that achieves median within floor accuracy of 4 m in large buildings and is able to identify the floor correctly in up to 60% of the cases and is within 2 floors in up to 98% of the cases in tall multi-floor buildings. We report evaluation results of two case studies conducted over a course of several years, with data collected from 6 buildings in 3 cities across North America. The key idea that makes accurate GSM-based indoor localization possible is the use of wide signalstrength fingerprints. In addition to the 6-strongest cells traditionally used in the GSM standard, the wide fingerprint includes readings from additional cells that are strong enough to be detected, but are too weak to be used for efficient communication. We further show that selecting a subset of highly relevant channels for fingerprinting matching out of all available channels, further improves the localization accuracy.
Accurate indoor localization has long been an objective of the ubiquitous computing research community, and numerous indoor localization solutions based on 802.11, Bluetooth, ultrasound and infrared technologies have been proposed. This paper presents the first accurate GSM indoor localization system that achieves median within floor accuracy of 4 m in large buildings and is able to identify the floor correctly in up to 60% of the cases and is within 2 floors in up to 98% of the cases in tall multi-floor buildings. We report evaluation results of two case studies conducted over a course of several years, with data collected from 6 buildings in 3 cities across North America. The key idea that makes accurate GSM-based indoor localization possible is the use of wide signalstrength fingerprints. In addition to the 6-strongest cells traditionally used in the GSM standard, the wide fingerprint includes readings from additional cells that are strong enough to be detected, but are too weak to be used for efficient communication. We further show that selecting a subset of highly relevant channels for fingerprinting matching out of all available channels, further improves the localization accuracy.
Recovery from intrusions is typically a very time-consuming operation in current systems. At a time when the cost of human resources dominates the cost of computing resources, we argue that next generation systems should be built with automated intrusion recovery as a primary goal. In this paper, we describe the design of Taser, a system that helps in selectively recovering legitimate file-system data after an attack or local damage occurs. Taser reverts tainted, i.e. attack-dependent, file-system operations but preserves legitimate operations. This process is difficult for two reasons. First, the set of tainted operations is not known precisely. Second, the recovery process can cause conflicts when legitimate operations depend on tainted operations. Taser provides several analysis policies that aid in determining the set of tainted operations. To handle conflicts, Taser uses automated resolution policies that isolate the tainted operations. Our evaluation shows that Taser is effective in recovering from a wide range of intrusions as well as damage caused by system management errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.