Soil suppressiveness to Fusarium disease was induced by incubating sandy soil with debris of wild rocket (WR; Diplotaxis tenuifolia) under field conditions. We studied microbial dynamics in the roots of cucumber seedlings following transplantation into WR-amended or nonamended soil, as influenced by inoculation with Fusarium oxysporum f. sp. radicis-cucumerinum. Disease symptoms initiated in nonamended soil 6 days after inoculation, compared with 14 days in WR-amended soil. Root infection by F. oxysporum f. sp. radicis-cucumerinum was quantified using real-time polymerase chain reaction (PCR). Target numbers were similar 3 days after inoculation for both WR-amended and nonamended soils, and were significantly lower (66%) 6 days after inoculation and transplanting into the suppressive (WR-amended) soil. This decrease in root colonization was correlated with a reduction in disease (60%) 21 days after inoculation and transplanting into the suppressive soil. Fungal community composition on cucumber roots was assessed using mass sequencing of fungal internal transcribed spacer gene fragments. Sequences related to F. oxysporum, Fusarium sp. 14005, Chaetomium sp. 15003, and an unclassified Ascomycota composed 96% of the total fungal sequences in all samples. The relative abundances of these major groups were highly affected by root inoculation with F. oxysporum f. sp. radicis-cucumerinum, with a 10-fold increase in F. oxysporum sequences, but were not affected by the WR amendment. Quantitative analysis and mass-sequencing methods indicated a qualitative shift in the root's bacterial community composition in suppressive soil, rather than a change in bacterial numbers. A sharp reduction in the size and root dominance of the Massilia population in suppressive soil was accompanied by a significant increase in the relative abundance of specific populations; namely, Rhizobium, Bacillus, Paenibacillus, and Streptomyces spp. Composition of the Streptomyces community shifted significantly, as determined by PCR denaturing gradient gel electrophoresis, resulting in an increase in the dominance of a specific population in suppressive soils after only 3 days. This shift was related mainly to the increase in Streptomyces humidus, a group previously described as antagonistic to phytopathogenic fungi. Thus, suitable soil amendment resulted in a shift in the root's bacterial communities, and infection by a virulent pathogen was contained by the root microbiome, leading to a reduced disease rate.
Soil suppressiveness to soilborne pathogens can evolve following the incorporation of plant residues in the soil and solarization. We studied its occurrence by assessing disease incidence and severity in sandy soil which was infested after the disinfestation treatment. Disease incidence and severity of crown and root rot in cucumber plants inoculated with Fusarium oxysporum f. sp. radicis-cucumerinum macroconidia were reduced by 20 to 80% when seedlings were planted in the tested soils 2 to 34 months after soil amendment. Residues of Diplotaxis tenuifolia (wild rocket [WR]), Artemisia dracunculus (tarragon), Salvia officinalis (sage), and Brassica oleracea var. italica (broccoli) were most effective for inducing soil suppressiveness. Effective soil suppressiveness continued to be evident after repeated inoculations and plantings in the same soil without additional treatment between inoculations. Moreover, residues of WR induced soil suppressiveness in two additional tested soils differing in their physical and chemical properties. Residues of Rosmarinus officinalis (rosemary), Coriandrum sativum (coriander), Mentha piperita (peppermint), and B. oleraceae var. botrytis (cauliflower) induced disease suppression at the first inoculated planting but not upon repeated inoculation and planting. The contribution of soil solarization to the evolution of soil suppressiveness, albeit evident, was inconsistent. Soil suppressiveness to Fusarium crown and root rot was also observed when cucumber seed were sown in soils which were initially amended with WR residues and later infested with F. oxysporum f. sp. radicis-cucumerinum chlamydospores. There is a potential for the use of plant residues for inducing soil suppressiveness and further contributing to the control of diseases caused by soilborne pathogens.
Cucumber green mottle mosaic virus (CGMMV) assigned to the genus Tobamovirus is considered a major disease cause of cucurbits worldwide. A primary route for CGMMV disease spread is via mechanical contact. The virus is highly stable and adheres to various agricultural equipment. In the current study, we examined means to inactivate the virus and reduce disease spread via planting equipment and supplies using various chemicals. We have found that incubations of CGMMV‐infected cucumber plant extracts with MENNO‐Florades 2%, Virocid 3% or Green Up D 20% inactivated the virus and prevented disease spread in a biological assay. Stabilised chlorine formulation (KlorBac), which has the active ingredient troclosene‐sodium (sodium dichloroisocyanurate, SDIC) at 2,000 ppm, was efficient in disinfecting CGMMV‐contaminated grafting knives in 2 s. Similarly, immersing virus contaminated grafting knives for 2 s in 20% (wt/vol) non‐fat milk powder reduced infectivity of the contaminated knives. CGMMV‐contaminated nursery sowing trays could constitute a primary infectious viral source transmitted via irrigation water. CGMMV‐contaminated sowing trays immersed in KlorBac 2,000 ppm or active oxygen (Huwa‐San TR‐50) 1%, were efficiently disinfected. Interestingly, hydrophobic insulation of the CGMMV‐contaminated trays using dry silicone layers reduced initiation of the viral primary infection in CGMMV‐contaminated new sowing trays but was less efficient in CGMMV‐contaminated re‐used trays. Importantly, Septadine (0.5% chlorhexidine gluconate) was not effective in disinfection of grafting knives. Notably, CGMMV‐infected cucumber plant extract incubated with 20% (wt/vol) non‐fat milk powder was refractory to the milk suggesting that virus release from surfaces did not necessarily involve virus inactivation.
A controlled laboratory system for simulating soil solarization, with and without organic amendment, was developed and validated using physical, chemical, and biological parameters. The system consists of soil containers that are exposed to controlled and constant aeration, and to temperature fluctuations that resemble those occurring during solarization at various depths. This system enables a separate analysis of volatiles and other components. We recorded a sharp decrease in oxygen concentration in the soil atmosphere followed by a gradual increase to the original concentration during solarization in the field and heating in the simulation system of soil amended with wild rocket (Diplotaxis tenuifolia) or thyme (Thymus vulgaris). The combined treatment of organic amendment and solarization (or heating in the controlled system) was highly effective at controlling populations of Fusarium oxysporum f. sp. radicis-lycopersici. Changes in soil pH, enzymatic activities, and microbial populations followed, in most cases, trends which were similar under both solarization and the heating system, when exposed to controlled aerobic conditions. The reliability and validity of the system in simulating physical, chemical, and biological processes taking place during solarization is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.