We study an interplay between delay and discontinuous hysteresis in dynamical systems. After having established existence and uniqueness of solutions, we focus on the analysis of stability of periodic solutions. The main object we study is a Poincaré map that is infinite-dimensional due to delay and non-differentiable due to hysteresis. We propose a general functional framework based on the fractional order Sobolev-Slobodeckij spaces and explicitly obtain a formal linearization of the Poincaré map in these spaces. Furthermore, we prove that the spectrum of this formal linearization determines the stability of the periodic solution and then reduce the spectral analysis to an equivalent finite-dimensional problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.