Increased counts and priming of peripheral polymorphonuclear leukocytes (PMNLs) are associated with future or ongoing atherosclerosis; however, the role of PMNLs in enhancing monocyte transendothelial migration is still unclear. Our aims were to examine endothelial and monocyte activation, transmigration, and posttransmigration activation induced ex vivo by in vivo primed PMNLs and the effect of antioxidants on the activation. A unique ex vivo coculture system of three cell types was developed in this study, enabling interactions among the following: primary human umbilical vein endothelial cells (HUVECs), monocytes (THP-1 cell line), and in vivo primed PMNLs from hemodialysis (HD) patients and healthy control (HC) subjects. The interactions among these cells were examined, and an intervention with superoxide dismutase and catalase was performed. Preexposed HUVECs to HD/HC PMNLs showed a significant monocyte transmigration yield, 120-170% above HCs. Monocyte exposure to HD PMNLs induced pre- and posttransmigration activation. When the three cell types were cocultivated at the same time, monocyte chemoattractant protein-1 protein levels released from HUVECs, and activation markers on HUVECs [CD54 and chemokine (C-X3-C motif) ligand 1] and monocytes [chemokine (C-X3-C) receptor 1 and chemokine (C-C motif) receptor 2] were increased. Monocyte transmigration yield decreased to 70% (compared with HC subjects) due to adherence and accumulation of monocytes to HUVECs. When superoxide dismutase and catalase were used, reduced HUVEC and monocyte activation markers brought the transmigration yields to control levels and abolished accumulation of monocytes, emphasizing the role of superoxide in this process. We conclude that peripheral primed PMNLs play a pivotal role in enhancing monocyte transendotelial migration, the hallmark of the atherosclerotic process. Primed PMNLs can be used as a mediator and a biomarker of atherosclerosis even before plaque formation. Primed polymorphonuclear leukocytes are key mediators in monocyte transendothelial migration, a new understanding of the initiation of endothelial dysfunction and monocyte activation, transmigration, and accumulation in the subendothelial layer.
Chickpeas are of excellent quality (protein, vitamins, minerals, unsaturated fatty acids) and very low in phytoestrogen, making them a potentially promising source for vegetarian-based infant formula (VBIF). However, their high starch and fiber concentration could hinder their utilization for infants. To overcome this natural shortcoming, a solid-state "enzymation" (SSE) process was developed in which imbibition of exogenous enzyme facilitates hydrolysis within the intact chickpea seed. The process was termed seed enzyme reactor (SER). Liquid imbibition data of dry chickpeas during soaking were fitted with the Weibull distribution model. The derived Weibull shape parameter, β, value (0.77 ± 0.11) indicated that the imbibition mechanism followed Fickian diffusion. Imbibition occurred through the coat and external layers. The process was tested using green fluorescent protein (GFP) as an exogenous marker, and involved soaking, thermal treatment, peeling, microwave partial drying, rehydration in enzyme solution, and SSE at an adjusted pH, time, and temperature. Amylases, or a combination of amylases and cellulases, resulted in significant carbohydrate hydrolysis (23% and 47% of the available starch, respectively). In addition, chickpea initial raffinose and stachyose concentration was significantly reduced (91% and 92%, respectively). The process could serve as a proof of concept, requiring additional development and optimization to become a full industrial application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.