Studies in rodent models suggest that calls emitted by isolated pups serve as an early behavioral manifestation of communication deficits and autistic like behavior. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Mthfr-knock-out mice are associated with impaired social preference and restricted or repetitive behavior. To extend these studies, we examine how pup communication via ultrasonic vocalizations is altered in these ASD models. We implemented an unsupervised hierarchical clustering method based on the spectral properties of the syllables in order to exploit syllable classification to homogeneous categories while avoiding over-categorization. Comparative exploration of the spectral and temporal aspects of syllables emitted by pups in two ASD models point to the following: (1) Most clusters showed a significant effect of the ASD factor on the start and end frequencies and bandwidth and (2) The highest percent change due to the ASD factor was on the bandwidth and duration. In addition, we found sex differences in the spectral and temporal properties of the calls in both control groups as well as an interaction between sex and the gene/environment factor. Considering the basal differences in the characteristics of syllables emitted by pups of the C57Bl/6 and Balb/c strains used as a background in the two models, we suggest that the above spectral-temporal parameters start frequency, bandwidth, and duration are the most sensitive USV features that may represent developmental changes in ASD models.
The levels and activity of the enzyme paraoxonase 1 affect the vulnerability to the teratogenic effects of organophosphate pesticides. Mutant mice lacking the gene for paraoxo-nase1 (PON1-/-) are more susceptible to the toxic effects of chlorpyrifos, and were hypothesized to be more vulnerable to social behavior deficits induced by exposure to chlorpyrifos during gestation. Three experiments were performed comparing PON1-/mice to PON1 +/+ mice born to dams treated with 0.5 mg/kg chlorpyrifos or cornoil vehicle on gestational days 12-15. Chlofpyrifos-exposed male PON1-/mouse pups had delayed development of reflexes in in the first experiment. In the second experiment, adult male and female PON1-/mice and the female PON1 +/+ mice all displayed lower social preference than the male vehicle-treated PON1 +/+ mice. The PON1-/mice and the female PON1 +/+ mice displayed lower social preference compared to the PON1 +/+ male mice. Male adult mice that had been exposed in utero to chlorpyrifos showed less conditioned social preference regardless of genotype. In the third study, the delayed reflex development was replicated in male and female PON1-/mice, but chlorpyrifos did not augment this effect. Nest Odor Preference, a test of early social attachment to dam and siblings, was lower in PON1-/mouse pups compared to PON1 +/+ pups. This study shows for the first time that PON1-/mice have a behavioral phenotype that indicates impaired reflex development and social behavior. Chlorpyrifos exposure during gestation tended to augment some of these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.