This paper reports a case involving computational practices in design process with an aim to understand the role of digital and non-digital tools in the design process. Following an ethnographic approach, we aimed at understanding the nature of the interactions among team participants which are human and non-human in a distributed system. We focused on computational practices in design process and we aimed to understand the role of digital and non-digital tools in the design process. Tools have remarkable role in a distributed system in the sense of propagation of knowledge. It was observed that form exploration by digital tools may not controlled as much as sketching.
The impact of different types of extremely low-frequency electromagnetic fields (ELF-EMF) on the growth of Staphylococcus aureus and Escherichia coli O157:H7 was investigated. The cultures of bacteria in broth media were exposed to sinusoidal homogenous ELF-EMF with 2 and 4 mT magnetic intensities. Each intensity for each bacteria was combined with three different frequencies (20, 40 and 50 Hz), and four different exposure times (1, 2, 4 and 6 h). A cell suspension of each experiment was diluted for the appropriate range and inoculated to Mueller-Hinton Agar (MHA) plates after exposure to ELF-EMF. The number of colony forming units (CFU) of both strains was obtained after incubation at 37 °C for 24 h. Data were statistically evaluated by one-way analysis of variance (ANOVA), statistical significance was described at p < 0.05 and data were compared with their non-exposed controls. Magnetic intensity, frequency and exposure time of ELF-EMFs changed the characteristic responses for both microorganisms. Samples exposed to ELF-EMF showed a statistically significant decrease compared to their controls in colony forming capability, especially at long exposure times. An exposure to 4 mT-20 Hz ELF-EMF of 6 h produced maximum inhibition of CFU compared to their controls for both microorganisms (95.2% for S. aureus and 85% for E. coli).
Bacterial cellulose (BC) produced by certain bacteria has the potential to be used in many different areas. Despite its advantageous properties such as high purity, mechanical strength, nano ber mesh structure, and high-water holding capacity, its production through a biotechnological process prevents it from competing with vegetable cellulose in terms of cost-effectiveness. Therefore, studies associated with BC can be divided in two categories which are development cost effective BC production methods and culture media, and production of high value-added products from BC. In this study, it was aimed to develop a taurine-loaded moisturizing facial mask with antioxidant properties based on BC's high-water retention and chemical retention capacity. BC facial mask samples were characterized by Scanning Electron Microscopy (SEM) imaging, Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), Liquid Chromatography-Mass spectrometry (LC-MS), microbial, and mechanical stability tests. According to our results, produced facial mask samples do not show any cytotoxic effect on neither human keratinocyte (HS2) nor mouse broblast (L-929) cell lines, it has high thermal stability which making it suitable for different sterilization techniques including sterilization by heat treatment. Taurine release (over 2µg/ml in 5 min) and microbial stability tests (no bacterial growth observed) of packaged products kept at 40 and 25 °C for 6 months have shown that the product preserves its characteristics for a long time. In conclusion "bacterial cellulose-based facial masks" are suitable for use as a facial mask, and they can be used for moisturizing and antioxidant properties by means of taurine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.